首页 > 哲学.宗教 > 数学:确定性的丧失TXT下载

数学:确定性的丧失

作者: M·克莱因 (美)
栏目:哲学.宗教
类别:现代
大小:773KB
评价星级:★★★★☆
下载次数:(本周:,本月:)
在线阅读  点击下载

书籍节选

书籍章节作者介绍
第一章 数学真理的起源
极度幸福的灵魂,
是为谁而激发!
为了这些真理,
去度量闪烁的星空!
他们用思想的缰绳,
驯服了桀傲的天体。
过去扑朔迷离的天空,
现在变得清清楚楚。
——奥维德
任何值得一提的文明都探索过真理。思索的人们尽管不能,但总是试图去理解复杂多变的自然现象,去解开人类如何定居在这个地球上的谜题,去弄明白人生的目的,去探索人类的归宿。在所有早期文明中,这些问题的回答都是宗教领袖给出的,并为人们所普遍接受。只有古希腊文明是个例外。希腊人发现(人类所作出的最伟大的发现)了推理的作用。正是古典时期(公元前600 年至前300 年间的鼎盛时期)的希腊人,认识到人类有智慧、有思维(有时佐以观察或实验),能够发现真理。
是什么导致希腊人作出这个发现,这个问题不大好回答。把推理用于人类活动和思维的始祖曾生活在爱奥尼亚——古希腊人在小亚细亚的一个定居处。许多历史学家试图依据政治和社会环境对此作出解释,比如,爱奥尼亚人有更大的自主性去无视统治欧洲希腊文明的宗教信仰。但是,我们所知的在约公元前600 年以前的希腊历史过于零碎,无法作出明确的解释。
当时希腊人把推理用于政治体系、伦理道德、法律、教育和其他许多方面。他们的主要的、决定性地影响了后代文明的贡献是接受了对推理的最强有力的挑战,知道了自然界有规律可言。在作出这个贡献以前,希腊人和古代其他文明时期的人们认为自然是混乱、反复无常,甚至是恐怖的。自然现象是无法解释的,或者是神的意志决定的,只有用祈祷、祭祀和其他宗教仪式来解脱。其卓越的文明可追溯到公元前3000 年的巴比伦人和埃及人,他们确实注意到了日月运动的周期现象,并据此设立了历法,但却没有更深入地研究它们。这些极少的偶然的观察没有改变他们对自然的态度。
希腊人敢于正视自然。他们的精神领袖(如果不是普通民众)摒弃了传统观念、超自然力、迷信、教条和其他思想束缚。他们是最早检验并试图理解各种谜一般的复杂的自然活动的人们。他们以思维与似乎瞬息万变的宇宙现象抗争,将理性之光洒于其上。
他们有着永不满足的好奇心和勇气,他们提出和回答了许多人遇到过、但却极少人试图解决,并且只能被具有最高智力水平的人所解决的问题。整个宇宙的运转是有计划的吗?植物、动物、人类、星系、光和声,仅仅是物理现象还是一个完美设计的一部分?由于希腊人总梦想着提出新见解,所以他们建立了后来统治整个西方思想中关于宇宙的概念。希腊的智者们对自然采取了一种全新的态度。这种态度是理性的、批判的和反宗教的。神学中上帝按其意愿创造了人和物质世界的信仰被摒弃了。智者们终于得出了这样的观念:自然是有序的,按完美的设计而恒定地运行着。从星体的运动到树叶的颤动,所有感官能感知的现象都能用一种精确、和谐而理智的形式来描述。简而言之,自然是按理性设计的,这种设计,虽然不为人的行为而影响,却能被人的思维所理解。
希腊人不仅是探索混杂现象的秩序和规则的勇敢的先驱,而且也是以才智发掘出自然现象显而易见所遵循的基本模式的先驱。他们敢于询问并且发现了人类观测到的最壮观的景象的基本规律:朝升夕落的太阳,阴晴圆缺的月亮,光彩夺目的行星,星汉灿烂的夜空,奇妙无比的日蚀、月蚀。正是公元前6 世纪的爱奥尼亚哲学家首先尝试寻求对大自然和宇宙运行规律的合理解释。这一时期的著名哲学家们,如泰勒斯(Thales)、阿那克西曼德(Anaximander) 、阿那克西米尼(Anaximenes)、赫拉克利特(Heraclitus)和阿那克萨哥拉(Anaxagoras),各自恪守一个主旨去解释宇宙的构成。比如泰勒斯认为万物都是由气态、液态和固态的水组成的,他试图用水的观点解释许多现象——这是一个不无道理的解释。因为云、雾、露、雨和雹是水的不同形态,而水是生命不可缺乏的,它滋润庄稼,养育动物。现在我们知道甚至人体的90%是水。
爱奥尼亚人的自然哲学是一系列的大胆的观察,敏锐的猜测和天赋的直觉,而不是广泛而细致的科学研究的成果。这些人也许有些过于急切看到世界的全貌,从而匆匆忙忙得到一些泛泛的结论。但他们的确抛弃了一些陈腐的神秘观点,而代之以唯物主义的,对宇宙的设计和运行的客观解释。他们以理性方法取代了幻想和非批判的观点,用推理来论证自己的观点成立。这些人敢于用思维来对待世界,拒绝依赖神灵、意志、鬼怪、妖魔、天使和其他也许能够维护或毁灭自然现象的神秘力量。可以用阿那克萨哥拉的话来表述这种理性观点的精髓:“理性统治着世界。”
摒除故弄玄虚、神秘主义和对自然运动的杂乱无章的认识,而代之以可理解的规律的决定性的一步是数学知识的应用。在这里,希腊人展示出一种可以与推理的作用的发现相媲美的、几乎同样富有想象力和独创性的洞察力:宇宙是以数学方式设计的,借助于数学知识,人类可以充分地认识它。最早提出自然界数学模式的是以毕达哥拉斯(Pythagoras)为领袖的座落于意大利南部的毕达哥拉斯学派。虽然他们从盛行的致力于灵魂的净化和将它从肉体的污浊束缚中解脱出来的希腊宗教中汲收了灵感和信条,其自然哲学却是完全理性的。毕达哥拉斯派震惊于这样一个事实,即由定性地看各种各样的现象都表现出相同的数学性质,可推知数学性质必定为这些现象的本质。更精确地,他们从数和数的关系方面发现了这种本质。数学是他们解释自然的第一要素,所有物体都是由物质的基本微粒或“存在单元”根据不同的几何形状组成的。单元的总量实际上代表了实在的物体,数学是宇宙的实体和形式。因而毕达哥拉斯学派认为:“万物皆数也。”因为数是万物之“本”,对自然现象的解释只有通过数字才能得出。
这种早期的毕达哥拉斯派思想是令人迷惑的。因为对于我们来说,数字是抽象概念,而事物是实际存在的。但我们已经得到了一种数字的抽象,而早期的毕达哥拉斯派并未做到。在他们看来,数字是点或微粒。他们提到三角形数、正方形数、五边形数时,想到的是点集、晶状体或点状物体。
数学:确定性的丧失 在线阅读:
第 1 页第 2 页第 3 页第 4 页第 5 页
下载地址: 点击下载TXT
更多>>

本栏下载排行

更多>>

相关下载