必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

工业创造与发明

_8 佚名(现代)
  刘伯尔斯趁机提出,希望能造一台机器,自动地向玻璃液内吹气,同时又会逐渐升高,这样就能制造大批量的窗玻璃了。对此,刘伯尔斯充满了信心。老板想,如果真的成功了,这可是赚大钱的机会,于是就满口答应了。
  刘伯尔斯相信,这台机器只需3个月,最多4个月就可造好。可是,熟料这一切仅仅是美好的幻想:第一台机器虽然很快造了出来,但试验中的挫折也接二连三地来了。
  首先,由于玻璃圆筒十分沉重,难以从熔炉中拔出,常常眼看着圆筒已提升到熔炉上空,只需再过片刻就可大功告成,却突然一阵裂响,玻璃碎片像雨点般落了下来;有时,即使将玻璃圆筒提拉了上来,并且截断、剖开成了平板状,却发现厚薄不均,厚的地方像块砖、薄的地方如层纸,这是怎么行呢?
  刘伯尔斯费了好大的劲解决了这些难题,新的问题又来了:圆筒变了模样,变成了梨状,上面粗下面细,越往下越细。原来,在提升过程中,里面的空气热胀冷缩导致了这种状况。要解决这个问题,必须不断增加吹入的空气数量,为此,刘伯尔斯又费尽了心思。
  当这一问题解决了以后,他又遇到了更凶的拦路虎:玻璃圆筒学会了“喘息”,一会儿胀大,一会儿缩小,使得圆筒壁上产生许多皱褶。为此,刘伯尔斯又是加压,又是减压,又是加速提升,又是减速提升……结果仍然不理想。
  老板失望了,他要刘伯尔斯放弃试验,重新拿起吹管。但刘伯尔斯不愿让多年的心血功亏一篑,他说服老板让他继续试验。
  有一次,发生了一点意外事故,输送压缩空气的管道裂了一条缝,里面的压缩空气直往外漏,此时正是提升玻璃圆筒的关键时刻,更换管道显然不可能了;刘伯尔斯当机立断,命令增加空气压力,补充漏掉的空气!谁知这一招却治好了“喘息”,圆筒十分光滑,没有一点皱褶。原来,当圆筒内的空气和外界接通后,“喘息”就消失了,为此,刘伯尔斯设计了一个特别的活门,他终于成功了。
  令人遗憾的是,刘伯尔斯在连续奋斗了12年以后,终于病倒了,病魔夺去了他的生命。工人们集体为他送葬,悼念这位将他们从“地狱”里解救出来的恩人。
  与刘伯尔斯相比,比利时发明家伏尔柯就幸运多了。
  伏尔柯出生在比利时名城布鲁塞尔的郊外,是一个手工作坊主的儿子。从儿童时代起,伏尔柯就亲眼目睹父亲和哥哥们含辛茹苦的工作情景,在他幼小的心灵中,感到了手工劳动的艰辛。
  伏尔柯长大以后,不愿留在乡村过父兄那样的生活,他要到城市里去驾驶机器。
  他来到了一家玻璃厂。那高大的玻璃熔炉以及刘伯尔斯发明的玻璃吹管机使伏尔柯激动不已。他对玻璃制造产生了浓厚的兴趣。
  可是,几年以后,当伏尔柯真正有能力操纵玻璃吹管机的时候,他又感到了不满足。虽然,刘伯尔斯发明的这种机器当时是最先进的,但也存在着不足之处,那就是提拉出来的巨大的玻璃圆筒还不能直接应用。必须先切割剖开,再加热软化后压平,最后才能切割成一块块窗玻璃。在这加工过程中,稍有不慎,就会前功尽弃,变成一堆只能回炉的碎玻璃。
  “有没有更好的制造平板玻璃的办法呢?”这一问题始终萦绕在伏尔柯的心中。
  有一天,他在用肥皂洗衣服时,偶然发现手和肥皂水之间有时会形成一层薄膜。“这种方法能不能用在玻璃制造上呢?”这一小小的发现给伏尔柯很大的启发,他决心用熔化的玻璃液试一试。
  小规模的试验十分成功。当伏尔柯将一块平板玻璃浸到玻璃液中,然后慢慢向上提升时,玻璃液果真像肥皂液那样“跟”了上来,而且也是平展展的。伏尔柯发现,向上提升的速度不能快,否则会越来越窄,最终变成一根玻璃棒。
  积累了这些经验以后,伏尔柯设计了一种新的平板玻璃制造机。用这种机器制造平板玻璃,可以在牵引机的带动下,昼夜不停地制造带状玻璃。这种方法看上去很慢,实际上每小时能提升五六十米呢!当玻璃升高时,温度不断下降,等到玻璃冷却以后,就可以切割成一块块宽大的玻璃板了。
  以后,伏尔柯又进一步改进了他的机器,可以通过控制提升速度制造出厚度不同的平板玻璃。
  很快,伏尔柯发明的机器在世界各地推广开来,至此,平板玻璃才真正成了大众产品,窗玻璃再也不是富有的象征了
  浮法玻璃
  美国康宁公司是世界闻名的玻璃制造公司,该公司的一个小伙子的偶然发现,引起了平板玻璃制造方法的又一次革新。
  那天午餐时,小伙子坐在靠窗的座位上,一边用餐一边欣赏着窗外的景色。突然,他发现了一种奇妙的现象:有块玻璃看上去平展展的,中间却有一条肉眼不易看到的变形纹,通过这条缝,外面的东西都会发生变形。
  小伙子的这一发现引起了坐在一旁的公司其他人员的注意,其中一位工程师对此十分重视,经过仔细观察,他发现这种变形玻璃的数量还不少呢?
  是什么原因产生了这种现象呢?原来,这是由于玻璃不完全平整造成的,玻璃在某些部份具有极细的波折,使得光线透过时发生转折,造成了变形。
  公司经理听了这位工程师的汇报,十分重视,希望公司内的科研人员尽快找到解决的途径。
  进一步的研究发现,玻璃发生波折的原因在于伏尔柯发明的机器在提拉玻璃板时,常会有一些偶然因素造成轻微的振动,这样,尚未完全凝固的玻璃就会产生波折。要完全消除这种波折,就必须完全消除机器的振动,但这几乎是不可能的。如果将有波折的玻璃切割下来报废,又会给公司带来巨大的损失。怎么办?
  经过公司人员的努力,终于找到了一种理想的办法——使“站”着的玻璃“躺”下,为此,科研人员设计了一张特殊的“床”——由金属锡熔融成
  “锡液槽”。
  当熔融的玻璃液从玻璃熔沪中流出来以后,流入了一条长长的熔融锡液槽中,玻璃液浮在锡液表面,逐渐冷却下来,由液态变成固态后,机器就拖着它前进。这样,绝对平整的平板玻璃就诞生了,人们称它为“浮法玻璃”。
  今天,“浮法玻璃”不仅仅用作窗玻璃,还出现在我们生活的许多领域呢!
  明镜可鉴
  镜子,几乎每家每户都有,人们在它面前梳妆打扮;女士们的手提包里也会有一块小小的镜子,出门可以用来梳发化妆。
  如果将镜子的玻璃做成特殊的形状,它的用处就更大了。例如,汽车上的凸面反光镜,可以反射较大范围内的情景;五官科医生头上的凹面反光镜,可将光线聚于一处,便于观察患处;上海大世界里的哈哈镜,更是集各类镜子之大全,它的变形功能常常逗得人们忍俊不禁。
  那么,镜子究竟是怎样发明出来的呢?让我们翻开历史,去浏览一番镜子的身世吧!
  在漫长的远古时代,人类没有镜子,但人类还是有自己的“土”办法看到自己影子的,那就是在静水中观望自已的倒影,“水平如镜“说的就是这种情景。“水镜”虽大,但是,毕竟形象模糊,稍有半点风浪,就起不到镜子的作用了。
  后来,原始人类在打制石制工具时,发现有一种叫“黑曜石”的石头,可以磨平照人,这就是所谓的“石镜”。据有关资料记载,石镜的出现距今已有2400多年了。
  随着社会生产力的发展,人类逐渐掌握了金属冶炼技术,于是出现了“金镜子”和“银镜子”,但是,这种镜子的代价实在太大,只有王公贵族才用得起。
  真正普及的镜子还是“青铜镜子”。
  据考证,我国从战国时开始用雕好的陶模浇青铜水铸成镜,背面铸有花纹,正面磨光照人,这便是“铜镜”的起源。
  汉代的铜镜涂料采用“玄锡”,即今天被称为“水银”的汞。汉代时,青铜镜通过丝绸之路传到了西方,由于这种镜子容易在空气中氧化,使用时便会受到影响。
  大约在 700多年以前,在威尼斯亚德里亚海湾里,有一个曾经闻名于整个西方社会的木兰诺小岛。岛上25000个居民,几乎都是熟练的玻璃工。这些人在试制彩色玻璃的过程中,偶然发现加入二氧化锰以后,会使混浊的玻璃液变得清澄,从而发明了熔炼完全透明玻璃的方法。
  有了透明玻璃,木兰诺的技师们便开始摸索制造玻璃镜子的方法。他们先将金属板磨得既平整又光滑,又熔炼出一块块玻璃,然后将玻璃合在金属板上,试图制成玻璃镜子。刚做好的时候确实不错,光鉴照人;可是,没过多久,镜面就变暗了,原来,水份和空气从金属板和玻璃板之间极细的缝隙中钻了进去,金属板又氧化了。
  怎么办呢?木兰诺的技师们开始将各种金属熔化后倒在平板玻璃上,以期与玻璃结合制成镜子,但是,都失败了。
  有一次,一个技师将锡熔化后,倒在光滑的大理石上,然后又加了一些水银,水银溶化到锡液中变成了液态的锡汞合金;接着,他又把一块磨平的玻璃放了上去,一层薄薄的银光闪闪的锡汞合金牢牢地粘在了玻璃上,他居然成功地制成了世界上第一面真正的玻璃镜子。
  精明的威尼斯人秘密地保守着这种制造玻璃镜子的方法,差不多200年中,整个欧洲的王公贵族都很羡慕他们生产的永不生锈的玻璃镜子。自然,那时候这种镜子的价格是十分昂贵的。
  据说,当时法国女王玛丽·麦迪奇结婚时,收到的所有礼物中最昂贵的就是一面玻璃镜子。这面镜子是以威尼斯共和国的名义赠送的,价值15000D金法郎呢!
  后来,法国人收买了几名木兰诺技师,在诺曼底郊外的密林深处开始大量生产玻璃镜子,至此,镜子的秘密才流传了出来。
  到了17世纪,镜子已经相当普及了。
  玻璃镜子虽然越来越多,但是它还很小,如何才能制造大镜呢?许多人都在设法寻找制造的方法。
  经过长期的探索,法国人发明了一种制造大玻璃镜子的办法。他们造了一张四周有边的铁桌子,然后将熔融的玻璃液倒在上面,由几个人拖着粗大的生铁圆棍子,在上面来回碾动,将玻璃展平,形成和桌面一样的大块。
  经过碾平的玻璃虽然很大,却并不光滑,要制造玻璃镜子,磨整的工序是万不可少的。
  首先,他们将大玻璃平板放在铺有厚毡的桌子上,撒一层细砂,再放上另一块玻璃平板,通过推拉上面这块玻璃,让细砂将这两块玻璃磨平,这项工作看似简单,却需要五六个工人连续工作30个小时呢!
  经过这样处理的玻璃还不行,它的表面存在着细砂留下的无数纹路,因此,磨平以后的玻璃还得进一步磨光。
  工人们先用一种极细的矿石粉末和着水,用包有羊毛毡的小木板来回磨擦几十万次;再用羊毛毡磨擦几十万次。这样才能达到制造玻璃镜子的要求。这一过程至少需要70个小时。
  因此,当时人们制造一块大玻璃镜子,至少需要耗时100个小时。这是多么艰苦的劳动啊!这种大玻璃镜子的价格当然不低。
  为了降低大玻璃镜子的价格,人们发明了一种磨平和磨光玻璃的机器。
  工人们在一只圆台上涂一层黄蜡,将玻璃放在黄蜡层上,圆台下有轮子可滚动;先让圆台滚到磨平圆盘下,洒一层细砂以及少量水,巨大的磨平圆盘便开始飞快地旋转,并且由上往下逐渐地移动。大约半个小时以后,玻璃板就被磨得厚薄均匀了。
  接着,圆台滚到磨光圆盘下,让包有羊毛毡的圆盘磨光,这一过程也只需大约半个小时。
  机器工作1个小时代替了工人工作100个小时,玻璃镜子的价格就渐渐地便宜了,普通的平民百姓也开始享用起这种原先只供王公贵族使用的物品。
  为了开发大量生产镜子玻璃的新技术,某家工厂的老板找来了两个年轻的工程师。这两个年轻人对玻璃生产完全是外行,一个是机器制造工程师,另一个是纺织工程师。老板希望他俩先到玻璃工厂去工作一段时间,了解一下玻璃的制作过程,然后以独特的思维方法发明一种全新的生产工艺。
  他俩在玻璃工厂内逐步了解了生产玻璃的全部过程,同时也洞察了这种生产方法所存在的种种缺陷。
  从1919年至1922年,他俩经过了整整3年的试验,一种全新的自动玻璃生产机器诞生了。
  稠厚的玻璃液不断地从玻璃熔炉中流出来,在两根旋转着的辊子中流过,经过这种碾压,又热又稠的玻璃液变成了一条长长的玻璃带,这条玻璃带不停地向前滚去,并且逐渐冷却,成为坚硬的长条状玻璃。
  工人们按照需要将玻璃切割成不同的尺寸,并将它们装到小货车上,这些小货车一辆辆连成环形列车,缓缓地沿着一条长廊前进;在长廊两侧安装着一台台磨平和磨光玻璃的机器,当列车通过走廊时,这些机器便将其 158个转动的磨盘依次放到玻璃板上,从粗到细,一路上自动将玻璃板磨平磨光;当列车驶出长廊时,一块块平整光滑的玻璃板就诞生了。
  在他们设计的玻璃厂内,从最初的砂、苏打粉和石灰粉进人玻璃熔炉,川玻璃液从炉中流出变成一条长带,逐渐冷却断成一块块玻璃板,最后变成平滑的玻璃板,一切都是连续的,这为质优价廉的镜子玻璃的诞生铺平了道路。
  })世纪初,人们不再采用有毒的汞合金制造镜子,而改为采用化学方法关玻璃板上镀一层薄薄的银,为了保护这层银,又在上面涂卜一层漆作为保护层,这样,银层就不容易剥落]”。
  fbi在,还 ‘Zj S观了另外一种新型的玻璃镜子—一铝镜,那是在玻璃后面 ‘“”’上一层极薄的铝做成的。
  光学玻璃
  16世纪末至17世纪初,人们发明了望远镜和显微镜,这些光学仪器中都必须装配各种镜头,这些镜头都是用宝贵的天然水晶磨制而成的。
  能不能用玻璃取而代之呢?当时的条件下根本不可能。因为经过千百年的努力,人们虽然掌握了制造透明玻璃的方法,但是,玻璃在熔炼时,总会留下许多缺陷,例如,玻璃中常常会夹带着一些气泡、灰色颗粒、小石子以及纹路等。这些缺陷都会改变光线前进的方向,怎么可以用来制造望远镜、显微镜的镜头呢?
  天然石英或水晶,虽然纯净无瑕,却非常稀少。能不能研制出人造水晶玻璃呢?
  300多年以前,英国人就开始了种种尝试,他们先后在玻璃中加入铅,消除了黑色,又用碳酸钾代替苏打,消除了因含铅造成的淡黄色,终于制成了一种酷似水晶的玻璃。不过,这种玻璃还是不能用来制造镜头——质地还是不够均匀,尤其是其中含有挥之不去的气泡。
  还有没有办法加以改进呢?
  质地不均匀的毛病不久就解决了,只需增加熔炼的时间;砂粒、石子也不难消除,只要选料精细、熔炼仔细便可。但顽固的气泡却怎么也没办法去除,以致当时的玻璃专家们认为。这就像出过天花的人脸上一定会留下麻子一样,中不可避免的。
  不过,法国有一个叫纪南的钟表匠,却熔炼出了没有气泡和石子的镜头玻璃。他是怎样熔炼的呢?开始的时候,无人知晓这一秘密,就连他自己的儿子,他也三缄其口。
  纪南临终之时,他才将儿子们召到床前,将熔炼镜头玻璃的秘密口授给了他们。他的儿子们继承父业,个个严守秘密,绝不流传给外人。
  直到19世纪末,德国出现了一个天才的光学家,他叫阿贝尔,是一个纺织工人的儿子。阿贝尔经过长期研究,终于揭开了纪南的秘密,发明了优质光学玻璃的熔炼方法。阿贝尔的发明很快就被德国的蔡司一绍特公司高价收买了去。这家公司的保密工作做得比纪南的子孙还要好。
  第一次世界大战期间,俄国以法国、英国同盟者的身份,在接受了极为苛刻的条件以后,才以极高的代价买到了制造光学玻璃的这一秘密。这一保守了几百年的秘密,说来十分简单——搅拌!只需在熔炼玻璃时加以搅拌即可。
  此后,到了前苏联时期,彻底打破了法国人和德国人对制造光学玻璃的垄断,公开了这一秘密,使全世界玻璃制造行业都受了益。
  耐火玻璃
  自从人类有了玻璃这种材料,用它制作的各种物品如雨后春笋般日见增多。玻璃制品美观、轻盈、光滑,深受人们喜爱。但是,它也存在着不足之处,除了容易碰碎以外,一个最大的弱点便是怕热。普通玻璃杯如果放到火上烘烤,不一会儿就会爆裂;在冬天,甚至倒入一杯沸水,有时也会发生爆裂呢!
  但是,人们却十分希望能有不会发生爆裂的玻璃新品种出现,尤其是与实验打交道的化学家,如果能一边加热,一边通过透明的容器观察化学反应过程,这该多好啊!
  为了得到不怕热的玻璃,化学家们开始探索起玻璃怕热的原因。原因很快找到了,原来,玻璃和其他物质一样,都具有热胀冷缩的性质,而且普通玻璃受热膨胀得还挺厉害呢!
  一般来说,膨胀并不会使物体发生破裂,因为有的物质传热快,短时间内各处都可同步膨胀,这便可避免破裂;有的物质传热虽然不快,却富有弹性,容易伸缩,因此也不会发生破裂。可悲的是,玻璃这种物质既传热不快,又缺少弹性,在受热时,接触高温的一边首先膨胀,另一边还依然如故,这岂有不破裂之理?
  那么,玻璃受热膨胀的主要原因是什么?如果找到这一原因,设法加以克服,不就可以避免破裂了吗?化学家和玻璃制造专家们又开始了新的探索。结果,他们发现,玻璃受热发生剧烈膨胀的原因在于其中使用了苏打原料。制造“耐火玻璃”的关键便是要找到一种代替苏打的原料。
  功夫不负有心人。玻璃专家们在试验了上百种物质、做了无数次实验以后,终于找到了一种较理想的物质——硼酸。试验表明,硼酸的膨胀度只有苏打的1%。
  不久,一种硼酸多、苏打少的新型玻璃便诞生了。它的膨胀度为普通玻璃 1/8,赢得了“耐火玻璃”的美誉。人们用它制成化学实验用的烧杯、烧瓶,制成普通的白炽灯泡,制成需要加热的食品器皿……
  今天,石英玻璃成了一种更新的耐火玻璃,它的膨胀更小,更能经受热的考验,相信以后还会出现更好的耐火玻璃呢!
  水玻璃
  《最后的晚餐》是意大利文艺复兴时期大艺术家达·芬奇的优秀作品,被绘在米兰教堂的一堵墙上。
  可是,没过几年,这幅画上的颜料开始剥落,尤其是画的中下部,由于潮气侵袭,损坏得更快。据说,法国皇帝佛兰西斯克一世为了抢救这件珍宝,曾下令将这堵墙完整地运到法国巴黎,妥善地保存它,然而,这在当时是不可能的。
  有没有可能发明一种东西能一劳永逸地保护这类艺术作品呢?许多人都在摸索着、试验着,法国明兴大学的福克斯教授便是其中之一。
  1818年,福克斯教授在他的实验室里熔炼成了一种新玻璃,其原料采用的是沙粒和苏打,不含石灰石的成份。这种玻璃看上去和普通玻璃没什么区别,同样的坚硬、明亮和透明;不过,如果把它浸到热水中,过不多久,它就熔解了,成了一种灰色的粘滞液体。根据这一性质,福克斯给它取了个名字,叫作“水玻璃”。
  水玻璃具有十分奇特的性质,如果用它来调白垩粉,就会凝固起来变成坚硬的白垩石;如果将它涂到树皮上,树皮立刻就会包上一层薄而坚硬的玻璃膜,就像芽了一件玻璃外衣。
  于是,福克斯很有把握地向壁画家们建议,在画画之前,先用水玻璃溶液刷一次墙,然后在墙粉中也掺一些水玻璃,待墙粉干了以后再描图绘画;最后,当壁画完成后,在其表面再涂一层水玻璃溶液,这样处理的壁画就可以大大延长保存的时间了。
  同时,福克斯又用水玻璃抢救濒临毁坏的壁画,他将水玻璃溶液涂在壁画的表面,也取得了很好的效果。
  以后,人们发现水玻璃还具有其他意想不到的功能呢!
  例如,将鸡蛋在稀薄的水玻璃溶液中浸一下,蛋壳外就“穿”上了一件密不透风的“外套”,这种鸡蛋不用冷藏也可保鲜一年,而且风味丝毫不变;大炮、坦克、军舰表面涂上油漆是为了防止生锈,但油漆容易燃烧,如果在油漆中掺入水玻璃,那么普通的油漆也就具有耐火性了;50多年前,前苏联莫斯科正在修建地铁,有一次,当地铁通过共产国际大厦底下时,疏松的地层使大厦发生了倾斜,在这关键时刻,科研人员建议将水玻璃溶液通过管子注下地下,使原先松散的沙土凝结成一个整体,终于使大厦化险为夷。
  红外玻璃和紫外玻璃
  太阳光中除了可见光之外,还有一系列肉眼看不见的光线,“红外线”和“紫外线”便是主要的两种。
  1800年,英国天文学家威廉·赫歇尔做了一个非常简单的实验,却获得了十分有意义的发现。这个演奏风琴出身的科学家,重复牛顿分解日光实验以后,在光谱的不同颜色区域各放一支温度计,检测其温度有什么不同。他发现光谱红色区的温度计水银柱升得高一些,但是,当他把一根温度计放在光谱红色区域之外时,一个奇怪的现象出现了:这个没有光照射的温度计水银粒竟然升高了,而且超过了红色光区域的温度。可以肯定,那里一定存在不可见的辐射,人们后来称之为“红外线”。
  红外线的发现,自然引起了人们这样的疑问:紫外区是否也有看不见的辐射呢?但是温度计放在那里,一点变化也没有。原来,紫外线不能穿透玻璃棱境,而且太阳发射的紫外线比红外线多得多,大部分紫外线被大气层吸收掉了。不过,紫外线还是很快被人觉察到了。1801年,德国物理学家里特发现,硝酸银放在光谱的蓝色光和紫色光区域曝光以后会分解出黑色的金属银,如果把硝酸银放在紫外区域,它分解得更快,从而证实了紫外线的存在。
  红外线、紫外线看不见、摸不着,如何对它们进行控制呢?化学家们不约而同地想到了玻璃,能不能发明出特别的玻璃仅让这些辐射通过,或者不让这些辐射通过呢?
  经过一段时间的试验,他们首先发明了阻止红外线、通行可见光的一种蓝绿色玻璃,有人称它为“南方玻璃”或“热带玻璃”,当然正规的名称为
  “红外玻璃”,用这种玻璃制造灯泡,能大大减少红外线的辐射。
  接着,化学家们又发明了一种阻止可见光、通过红外线的玻璃,这种玻璃含有锰,黑不溜秋的,看上去完全不透明。人们用锰玻璃制成特殊探照灯的滤光镜,即使里面点着大灯泡,外面也看不见丝毫光线,感到的只是阵阵热气。侦察员们正是借助这红外线来观察外部情况的。
  红外线如此,紫外线也不例外!
  化学家们发现,普通的窗玻璃本身就具有阻挡紫外线的功能,究竟是玻璃中的什么物质在起作用呢?经过层层分析,剔除了制造玻璃的原料沙子、苏打和石灰石,抓到的则是玻璃中含量微不足道的铁质。如何去除这些铁质,使普通玻璃也能透过紫外线呢?化学家们想到了铁的克星——硼酸,只要在玻璃中加入少量硼酸,紫外线就可以通过玻璃了。于是,“紫外玻璃”诞生了。
  那么,如果想发明一种完全不会透过紫外线的玻璃,只要在玻璃中多加些铁质就行了吗?不行!因为铁质一多,玻璃的颜色就会变成红色,这样又会阻挡可见光的通过。经过无数次的试验,化学家们终于找到了一种稀土金属的混合物、将这种混合物掺入玻璃,就可制造出完全阻挡紫外线的无色玻璃了。由于这种玻璃最适合用于博物馆、美术馆、档案馆和图书馆,可防止其中的文件资料因紫外线照射而发黄变色,因此人们称这种玻璃为“文件玻璃”。
  变色玻璃
  说起变色玻璃,人们自然而然地会想到变色眼镜。这种神奇的眼镜会像魔术师那样随外界光线的强弱而变化:光线暗的地方,变色眼镜就变亮,使人能看清东西;光线亮的地方,它又会变成深色,自动保护眼睛不受强光的刺激。
  这种变色玻璃的发明,是玻璃化学家从摄影化学家那里获得的启示。摄影师一按快门,就能在胶卷上留下美丽的一瞬。它靠的是什么呢?原来是可见光分解的银盐。银盐本来并不挡光,是光使它分解成为不透明的银原子,从而构成底片上的人物风景的。能不能将这一原理用于玻璃上呢?于是玻璃化学家们就试着让氯化银、溴化银、碘化银这些对光十分敏感的试剂加到熔融的玻璃液中,还加入了微量的氧化铜,这样,自动调光的“变色玻璃”就诞生了。
  由于接入玻璃中的银盐和氧化铜数量很少,而且颗粒也十分微小,平时光线可以自由穿过,与普通玻璃相差无几;处于强光照射下,银盐在光的催化下分解成银和卤素,分解的程度和光线的强弱有关,光愈强分解愈多,分解后的银聚集在玻璃上,它就变成深颜色;光线较弱时,卤素和银在氧化铜的催化下,又化合成卤化银,使玻璃变得明亮。
  最近,美国洛杉矶加利福尼亚大学的研究人员研制出了一种新的变色玻璃。它一遇到某种化学物质就会改变颜色,根据这一特点,可用它作为环境监测以及医疗诊断的显示器。发明这种玻璃的科研人员首先将玻璃制成溶液,然后添加经过精选的、遇到某种化学物质就变色的酶或蛋白质。随着玻璃溶液的固化,在大蛋白质周围可产生一根像实心面条状的玻璃束。在成品玻璃上,有很多毛孔,足以使氧气、一氧化碳之类气体的微小分子进入玻璃,从而使它变色。
  而日本尼康公司新近开发的一种新颖电子太阳眼镜,其镜片采用的是电感色材料,并安装有微型电池和触摸式开关。当开关打开后,由于镜片玻璃中的电荷发生变化,就可改变它的颜色。这种镜片玻璃最大的优点是其颜色的转变时间仅需4秒。在明亮的阳光下能自动变暗;汽车驾驶员戴上它进入或离开隧道时能逐渐变色;滑雪运动员从室内直接进入滑道时也是如此。
  变色玻璃正从光学变色向化学变色和电子变色方向发展呢!
  防弹玻璃
  本世纪初的一天,法国化学家别涅秋克来到实验室做试验。像往常一样,他开始打扫实验室,用掸子轻轻掸去各种仪器上的灰尘。这时,只听“”的一声,无意中将一个长颈玻璃烧瓶碰掉到地板上。他责备自己太粗心,将用了很久的玻璃仪器损坏、太可惜了。然而,当他往地上一看却愣住了:烧瓶并没有碰碎,在瓶上布满了横七竖八、互相交错的裂纹,但没有一块碎片掉下来。
  “真是个奇迹!”别涅秋克感到很奇怪。他拿起烧瓶沉思起来,想探究这到底是怎么回事儿。忽然,他想起来了,这只烧瓶曾经装过硝酸纤维素溶液,溶液挥发后留下一层薄膜,像橡皮一样紧贴在瓶壁上。但它和烧瓶碰而不碎有什么关系,别涅秋克一时还来不及研究,就顺手写了个标签,注明情况,贴在烧瓶上,然后把烧瓶放回原处,准备空暇时再仔细探讨。
  几年时间很快过去了。一天,别涅秋克在报纸上看到一条消息:一辆急驰的小汽车在大雾茫茫之中撞在电线杆上,然后翻进了深沟里。车上的乘客一个被撞死,另外两个被车窗玻璃碎片划成重伤。看到此处,别涅秋克就想到,如果车窗玻璃碰而不碎那该有多好!忽然,他又想起,好像在什么地方见到过不碎的玻璃?
  于是,他急忙在实验室里寻找起来。翻遍了室内各个角落,终于在一排试管架上找到了那个贴着标签的长颈玻璃烧瓶。他如获至宝,对烧瓶仔细观察,并开始专心致志地研究和试制不破碎的防弹玻璃。这种玻璃是在数片玻璃中间夹入透明的塑料膜片,然后经加热、加压和粘合而成。当它受到剧烈撞击时,由于有透明塑料膜片的粘接,玻璃被撞裂破碎后,碎片不会飞散,从而能保证人身安全。
  别涅秋克发明的防弹玻璃,很快被使用在高级轿车的前后风窗上,以及飞机和宇宙飞船的舷窗上。近年来,防弹玻璃的性能得到进一步提高,成为名副其实的抗子弹射击的“防弹玻璃”。例如,原联邦德国制成的一种25毫米厚的防弹玻璃,能挡回近距离射出的手枪子弹和机枪子弹,真似铜墙铁壁一般。另外,它还可以做得更厚,增加其抗弹的能力。英国制造的防弹玻璃厚达609毫米,不仅坚固结实,而且十分透明,人们还可以透过它阅读书、报呢!
  微晶玻璃
  玻璃家族中有个与众不同的成员,名叫微晶玻璃。它具有与普通玻璃不同的结构,生就一种特殊的性格。它硬度高,抗弯强度是普通玻璃的7~12倍。它耐高温性能好,软化温度高达1000℃,即使达到900℃高温,突然投入水中也不会炸裂。它的膨胀系数可以调节,甚至可使其膨胀系数为零。它不但电性能优异,还可以用来制作雕刻艺术品,在它身上打出成千上万个微孔也不是一件难事。所以,微晶玻璃在生产中有许多独特的应用。
  那么,微晶玻璃是怎样发明的呢?
  50年代初,在世界上享有盛誉的美国康宁玻璃公司为了开发新型玻璃,抽调一批精干的科研人员,组成了研究发展中心。化学家斯托凯受命在该中心负责研制含微量银的感光玻璃。所谓感光玻璃,就是一种能感光显色的新型玻璃。这种玻璃经紫外线照射感光后,再经热处理,就能显示出美丽的影象,不但色泽鲜艳,而且永不褪色。
  一天,斯托凯正在实验室做热处理试验。按工艺规程要求,热处理时加热温度为玻璃软化温度以下 50~100C,保温时间为1~2小时。斯托凯把一块玻璃放入自动控制温度的电炉中,将温度控制仪上的加热温度调整为600C。这种温度控制仪的工作原理是:一旦炉温超过设定的温度,比方说600C,它会自动切断电源,停止加热;而当温度下降到低于600C时,又自动接通电源。这样一会儿断电一会儿通电,就把炉温保持在600C左右。
  现在,斯托凯一切准备就绪,他关上炉门,接通电源,电炉开始升温。突然,传来一阵急促的电话铃声,原来是通知他立即去开会。按照实验室规定,电炉在加热时工作人员不能离开岗位,但斯托凯想,反正有温度控制仪,就明知故犯地离开实验室去开会了。当他重返实验室时,不禁大吃一惊,控制仪失灵,炉内温度早已升到900C,真是糟糕透顶。不仅实验失败,而且熔融玻璃会粘住炉膛,损坏电阻丝,后果十分严重。
  斯托凯非常懊恼,赶紧打开炉门,意外的事情发生了:玻璃没有熔融,还是直挺挺地躺在炉内,但已面目全非,样子有点像不透明的瓷砖,用钳子夹起来不是软绵绵的而是硬邦邦的,敲起来还会发出像金属那样的声音。
  这块玻璃究竟发生了什么变化?经过仔细的研究和反复试验,斯托凯在显微镜下观察到:这块玻璃中析出了大量的微小晶体,这就是后来大名鼎鼎的微晶玻璃。
  顾名思义,微晶玻璃是由微小晶体组成的玻璃。由于这种玻璃具有与陶瓷相似的结构,所以又称为“玻璃陶瓷”。
  我们知道,玻璃属于非晶态的固态物质。在玻璃制造过程中,由于冷却太快,内部分子来不及排列成整齐的队伍就凝固了,所以基本上还是液态时的结构,显得杂乱无章。只不过玻璃中的分子运动起来不能像在液态中那样自由自在,只能在原地“踏步”,因此形象地说,玻璃是“被冻结的液体”。
  但是,玻璃的这种结构是不稳定的,在一定条件下,玻璃还是要让分子按照一定规则排列起来,析出晶体。这正像水总是从高处流向低处,结晶是玻璃的自然趋势。
  什么条件下玻璃才能析出晶体呢?空气中的水汽要以尘埃作为凝聚的核心,才能形成水滴。同样,玻璃结晶也要有适当的核心,除了玻璃的自身成分可以作为结晶核心外,金、银、铜等金属元素和氧化钛、氧化锆等氧化物也可作为结晶核心。当然,要使玻璃析出晶体,还要在成分、温度、能量等方面满足一定的条件,一般在900~1100℃温度范围内比较容易析出晶体。
  制造微晶玻璃,就是要创造玻璃结晶的条件。首先要确定微晶玻璃的化学成分,并事先加入微量的金属元素或氧化物作为结晶核心。然后在玻璃熔炼、成型后,用紫外线照射,再进行热处理,给予一定的能量条件,使结晶核心像种子发芽一样,生长出许多微小的晶体,其直径通常不超过2微米,只有头发丝粗细的几十分之一。这种要经过紫外线照射才能制成的微晶玻璃,称为“光敏微晶玻璃”。不用紫外线照射,只通过热处理也可以制成微晶玻璃,这种微晶玻璃称为“热敏微晶玻璃”。目前已有1000多种不同成分的微晶玻璃,具有各种不同的性能,但万变不离其宗,微晶玻璃的性能都同微小晶体的存在有关。
  在玻璃中加入微量的感光性贵金属银作为结晶核心,可制成透明的光敏微晶玻璃。在这种玻璃上面覆盖一张照相底片,放到紫外线下照射一定的时间,使玻璃中照到紫外线的地方形成银原子的潜象,成为以后析出微小晶体的核心。再经热处理,玻璃中照到紫外线的地方便析出微小晶体,玻璃上出现乳白色的图象;而未照到紫外线的那部分玻璃没有结晶,仍然是透明的。这种玻璃的结晶部分和未结晶部分在性能上有很大的差别,在氢氟酸中的溶解能力大不一样,前者比后者要大20多倍。将这块玻璃浸入氢氟酸,由于结晶部分容易被氢氟酸腐蚀掉,而未结晶部分岿然不动,玻璃上便形成了与底片上一样的精美雕刻图案,其水平绝不亚于专门从事雕刻的能工巧匠。
  利用这种化学蚀刻技术,可以对玻璃进行刻花和精密加工。例如,在指甲那么大的玻璃上可打出上万个小网眼,网眼的直径小到连头发丝都穿不过。此外,还能打出各种形状的孔眼,如方孔眼、三角孔眼等。
  由于光敏微晶玻璃具有良好的电学性能和化学加工性能,故常用来制造印刷线路的基片和镂板,为电子工业的固体电路微型化作出贡献。光敏微晶玻璃还能用来制造射流元件,为实现气动控制自动化立下汗马功劳。用光敏微晶玻璃制成的高级装饰品和艺术珍品,更受到人们的欢迎。
  天文学家常用反射式望远镜观察天体,这种望远镜中有一面巨大的凹镜,用于聚集来自遥远星体的微弱光线。凹镜愈大,能够集中的光线愈多,看到宇宙的范围愈大,成象愈明亮清晰。自从1668年牛顿发明反射式望远镜以来,凹镜的直径做得愈来愈大。在本世纪40年代后期,世界上第一台大型反射式望远镜建成,它的凹镜直径为5米,净重13吨,连同其他部件,望远镜总重达530吨,安装在美国帕洛玛山天文台。这台望远镜能接收到几十亿光年远处发出的极微弱的光线,比人眼灵敏100万倍。
  但这台反射式望远镜有一个缺点。其凹镜采用的是普通光学玻璃,这种玻璃膨胀系数较大,因此凹镜的准确形状和尺寸精度会受气温的影响而发生变化,从而会改变光的路线,使成象的清晰度降低。
  微晶玻璃的澎胀系数很小,这是因为微晶玻璃在热处理过程中会析出具有“热缩冷胀”性质的微晶颗粒,和一般玻璃材料的“热胀冷缩”的特性正好相反。因此通过调节可以使这两种特性相互抵消,制成膨胀系数为零的微晶玻璃。用这种微晶玻璃制成的凹镜,其精确度不会受到温度影响。于是,微晶玻璃又有了一个用武之地,它是制作大型反射式望远镜凹镜的理想材料。
  我国在1978年用超低膨胀系数微晶玻璃制成了凹镜直径为2. 2米的反射式望远镜,安装在北京天文台,使我国进入了为数不多的能制造这类大型微晶玻璃凹镜的国家的行列。
  这种超低膨胀系数的微晶玻璃还广泛用于厨房用具、热工仪表、医学和建筑材料等方面,如果制成餐具或烧锅,急冷急热都不用担心炸裂。它强度、硬度高,耐磨性好,常用来做钟表和精密仪器中的轴承,作为贵重的红宝石的代用品。
  我们知道,导弹是一种命中率极高、杀伤力很大的现代化武器。为什么导弹的命中率会那么高呢?原来,导弹的头部装有一个由敏感系统、测量系统、控制系统、执行机构等电子装置组成的制导系统,它可以精确地控制和修正导弹的飞行方向。但导弹在大气中飞行,其头部因与空气摩擦而产生相当高的温度,因此在导弹的头部有一个流线型防护罩,用以保护装在其内的制导系统。防护罩要满足很高的要求,它既要能计微波信号透过,又要抗高温,以保证其内部的电子装置在导弹高速飞行时能正常工作。
  微晶玻璃具有良好的成型性,容易加工成尺寸精确、材质均匀的零件。它比重小,抗弯强度高,在短时间内可经受120℃的高温考验。用它来制作防护罩,在导弹高速飞行时能辐射大量的热,从而降低工作温度。因此,微晶玻璃是一位名副其实的导弹头部的“保护神”。
  摩天大楼的主角
  钢筋混凝土
  建筑是人类智慧的结晶,埃及的金字塔,中国的万里长城是优秀的代表,这里每一砖每一石都表现出人类的聪明、才智,也渗透着劳动人民的血汗。
  在建筑中大概最重要的问题就是如何把那些巨大的石块紧紧地连在一起。这个问题自古以来就想了许多方法,据说,在建长城的时候就用过糯米浆当黏合剂。当然,最常用的是石灰,从山里开采出来的石灰岩在石灰窑里煅烧到900摄氏度,就得到生石灰,生石灰加水以后便成为熟石灰,熟石灰掺入砂子做成灰浆,便成了盖房用的黏合剂了。灰浆在空气中吸收二氧化碳,变成碳酸钙而逐渐凝固起来,从而把砖石牢牢地粘在一起。
  但是,这种方法对于水下建筑是不灵的,在水里,灰浆是不能凝固的。
  古代罗马人发现,如果把石灰与当地产的一种白榴火山灰混合起来,这种灰浆在水下也能凝固,这就是最早的水泥。
  古罗马人用这种水泥建造了许多宏伟的神殿和庙宇,但是这种技术很快就失传了,到了1568年法国建筑师德洛尔姆通过自己的研究才重新发现这种
  “罗马混凝土”,因此欧洲后来一直使用这种罗马水泥。
  1756年英国名列第三的埃迪斯通灯塔失火,灯塔烧毁,严重地影响航行,因此政府命令当时著名的技师斯密顿组织人力,限期全力抢救。
  修建灯塔所需要的“罗马水泥”,必须用意大利的白榴火山灰,但是货源奇缺,面对着这些低品位的原料,斯密顿心急如焚,他决心用现有的材料进行试验。斯密顿从小就对机床,蒸汽机等机械感兴趣,并自己组装了这些机械模型。毕业后,当律师的父亲让他到一位律师那里工作,学了三年律师,但是,由于对于当时不断发展的机械技术感兴趣,他不得不放弃律师的工作,决定到科学器械及数学器具制造厂去工作。他改进了纽可门蒸汽机,还改进了水车、风车这些当时重要的动力机械,成为出名的人物。
  他找来许多工人,按照他的配方进行煅烧,每烧出一种新的粉末,就与砂石加水拌合,看看强度如何,工作十分艰苦,每天下来满脸灰尘,烟熏火燎,疲惫不堪,但是斯密顿还是夜以继日地工作着。
  “烧出合格的水泥了!”
  有一天,工地的工人惊喜地跑来告诉他。他立即跑到工地上,当用一把锤子在上面重重地敲打时,混凝土纹丝不动,是一种结实的建筑材料。
  但是,能不能再烧出这样的材料呢?在他的印象里,这一炉的配方和前几次的差不多,为什么质量特别好呢?
  经过仔细地分析才发现,原来这炉用的石灰石是新近运来的,其中含有大量的黏土,大概是黏土起了作用,斯密顿又进行了一连串的实验,证明了确实是这样,他发现含有20%左右黏土的石灰石煅烧以后就变成了水泥。
  埃迪斯通灯塔就是用这种材料修成的,这座灯塔在风雨里屹立了 118年。
  斯密顿为世界建筑找到了一种廉价的材料,他的著作成为水泥工业的历史文献,而他本人则被人们推崇为水泥工业的奠基人。
  说到这儿,我们不得不提一提另一个水泥发明家阿斯普丁,他发明了波特兰水泥,这种水泥因硬得像波特兰岛的石头一样而得名,但是因为他狭隘、自私,到死人们也不知道他的配方,他的工厂的周围有六米高的围墙,比一般的高几倍,外边的人休想从墙外窥视一眼,至于原料的配方,连直接从事操作的技师也无法知道,至今是个谜。
  后来,英国的水泥技师约翰逊以顽强的毅力,对波特兰水泥进行了科学的研究,终于在1845年确立了水泥制造的原理,并了解了水泥的物理化学性质,后人把著名的波特兰水泥的发明荣誉归于约翰逊。
  石头和水泥是很好的建筑材料,它们能顶住很重的重量,但是不能做栋梁,因为它们容易断裂,19世纪中期有一个叫莫尼埃的花匠解决了这个问题。
  在他管理的花园里,奇花异草生机盎然,香气扑人,行人路过此处,无不驻足观赏,流连忘返。为了进一步发展,莫尼埃盖了一个大的温室,温室需要许多大花盆。当时买不到这么大的瓦盆,用木盆价格又太贵,他听说水泥是一种好材料,于是动手做了一些大花盆。花盆做好了,莫尼埃很高兴,但是在他来回搬动花盆的时候,许多花盆裂开了,珍贵的花木受损,使他心痛,他赶快用铁丝一圈一圈地把花盆缠起来,再涂上一层水泥,等水泥干了,他发现这种花盆特别结实,就是用锤子敲打也不会裂开,这就是早期的钢筋混凝土。
  一天,一位工程师到花园来看花,看到了莫尼埃的水泥花盆、水池,便劝他把这种技术用到工程上。
  莫尼埃的思路大开,他想到既然可以做花盆,当然也可以做蓄水池和铁路的枕木,钢筋混凝土取钢筋耐拉的长处和水泥抗压的特点,形成极好的建筑材料,莫尼埃为此在1867年申请专利。1885他研制了钢筋水泥管,1891年生产了电缆管块。
  其实在莫尼埃以前,法国的兰博特就发明了钢筋混凝土,兰博特用钢筋混凝土制作了一个小瓶,1855年曾在巴黎博览会上展出。他还造了一只钢筋水泥船,一直到今天,100多年来一直完好如初。他的发明没有引起人们的广泛重视而使莫尼埃侥幸获得专利,其原因是,一个发明要得到公众的认可必须进行广泛的宣传,莫尼埃在发明钢筋混凝土后立即联想到大量的用途,从而得到了许多土木设计师的钦佩和支持。
  19世纪末,水泥工业得到进一步的发展,促进了高层建筑的大发展。
  防水水泥和彩色水泥
  水泥怕水,这是大家都知道的常识。在运输、保存水泥的时候,如果让它淋了雨、受了潮,它就会结块变硬,失去效力。
  有没有办法克服水泥的这一弱点呢?科研人员发明的一种“防水水泥”就不怕雨淋受潮。原来,他们在分析了水泥的特性之后认为,只需要在将水泥磨细时加进一种称为“石油酸钠皂”的不怕水的物质,那么,磨出来的每一颗水泥粉末表面都会有一层防水薄膜,水就不容易渗透进去使它变硬结块了。
  这种防水水泥在使用之时,如何让水渗透进去呢?原来,水泥颗粒外的防水膜非常薄,只需要将它和沙子、石块放在一起,加上水搅拌时,砂石的摩擦自然会轻而易举地脱去这层膜,恢复水泥的“庐山真面目”。
  这种防水水泥不仅运输、贮存方便,用它配成的混凝土还有膨胀程度小、耐腐蚀性能好、粘性强、不怕冻的优点呢!
  无论是防水水泥,还是普通水泥,其颜色都是青灰色的。人们多么希望科研人员能发明出彩色水泥啊,这样,我们生活的城市将会被装扮得更美更艳。
  为了研制彩色水泥,首先必须了解以往水泥的青灰色来自何方?制造水泥的原料多种多样,有的是用石灰石和粘土煅烧而成的,有的是用炼铁高炉产生的废渣制成的,科研人员通过分析证明,这些原料中都含有人称“黑色金属”的铁和锰的成份,一定是铁和锰的成份在作怪!他们决定试制一种不含铁和锰的成份的水泥,看看它究竟是什么颜色的。
  可是,要找到不含铁和锰成份的原料并非易事。是餐桌上的瓷碗启发了科研人员:制瓷器的高岭土基本不含有铁质。
  有了白粘土,还要有白石头。尽管白石头不少,但有的不适合烧制水泥,有的又价格昂贵,最后,他们选中了海滩上的白贝壳,它不是和石灰石成份基本相同吗?
  终于,洁白的水泥出现了。
  有了白水泥,科研人员又在其中加入各种颜料,彩色水泥便呈现在了人们面前:加铬酸铅成了黄色水泥,加氧化铬成了绿色水泥,加氧化钒成了红色水泥,加硫化锡成了金色水泥……
  有一种“气象水泥”,也是在白水泥中加入了二氯化钴及某些特种颜色后发明出来的。空气干燥时,它的颜色是蓝色的;空气潮湿将要下雨时,它因吸收水份而变成红蓝夹杂的紫色;下雨空气湿度很大时,它又会由于大量吸收水份而变成鲜艳的玫瑰红色。
  建筑的基石
  砖是最古老而重要的传统建筑材料。《旧约全书·创世记》的第11章说,
  “他们彼此商量说,来吧,我们要作砖,把砖烧透了。他们就拿砖当石头,又拿石漆当灰泥。他们说,来吧,我们要建造一座城和一座塔,塔顶通天……”如果说巴别城的这座塔实际上没有建成,那么,巴比伦塔 (巴别塔的传说来源于此)却是比较经久的,和巴比伦王国的城市建筑一样,也是用砖砌的。底格里斯河平原和幼发拉底河平原一样,是冲积平原,缺乏普通的石头和大理石,而粘土却是很多的。由于缺乏石料,不能做立柱,只好大量采用扶壁柱支撑——这就使建筑物变得又笨重又简单。
  巴古伦人(约公元前3000~1250年)的建筑技术传给了尔后的亚述人(到公元前612年)。我们发现早期的埃及王朝(从公元前3200年起)也利用砖来建房屋。比砖更耐久的石料 (埃及的石料来源丰富)用来建纪念性的建筑物,因为带宗教色彩的建筑必须耐久。
  大约公元前3500年,美索不达米亚地区的手工砖,是把砖放进砖窑里烧,而不是放在太阳底下晒。在这以前,砖的尺寸很大。由于砖的尺寸大不便烧制,这时已缩小到现在用来盖房子的砖那么大。用砖窑烧制的砖比晒干的砖耐用,用来建造建筑物中受力最大的部分或易腐蚀的部分。因为大量生产烧制砖成本很高,所以常常不得不采用一些权宜之计。乌尔城的大塔 (约公元前2000年)主要是用晒干的砖建的,每隔一段加一层芦席以加强承重能力。烧制的砖只用来砌塔的包层。用上釉的办法甚至可以制出更经久耐用的砖。我们发现在约公元前 1000年左右,美索不达米亚人在这方面进行过试验。
  罗马人制砖的技术是很高明的,他们的专门知识可能是从埃及人和希腊人学来的。但是在罗马帝国灭亡后,欧洲的制砖技术便失传了。虽然英国在13世纪已有砖建筑,但是直到亨利八世统治时期才开始广泛地用砖来作建材,而且只用来建造像汉普顿王宫那样的显赫建筑。砖的使用之所以能逐渐普及,第一是砖便宜(任何城市的郊区,只要有适合制砖的泥土就有砖厂),第二是砖能防火(伦敦曾被一场大火烧成一片废墟;它就是用砖和石头重建的)。
  沥青的来历
  沥青可以从松油和焦油获得,也有以矿物形式存在的沥青。沥青加热时变粘稠,冷却时变坚硬,古时用于建筑,也用来堵缝。要获得沥青,需将木材烧成木炭,从余烬中收集木焦油。在美索不达米亚,矿物形式的沥青基本上是以纯净的形式存在,可从地表沉积物中收集。巴勒斯坦也有这种沉积物。
  苏美尔人使用沥青,巴勒斯坦的居民也使用沥青。在耶利哥城的发掘中,发现了一垛用沥青粘合的砖墙,其年代约为公元前2500年至2100年。沥青实际上主要是用作灰泥。巴比伦人作砖活儿时一般都用沥青作粘合剂;印度河谷的人(约公元前2500~2200年)也这样使用沥青。它常常跟烧过的砖和植物纤维混合使用以增加其强度。它除了用来保护砖房外,还用来绝缘,或用来作防潮层。古人在幼发拉底河上建了一座桥,其桥墩的没水部分,表面就涂了一层沥青,以防止腐蚀。
  在古代,这种物质的另一个主要用途是使船不漏水:巴比伦的吉尔加麦西及《圣经》上的相应人物诺亚,都谨慎地在他们所乘船只的里层和外层涂上沥青。同样,摩西之所以能安全地到达埃及法老女儿的手中,也是因为他所乘坐的纸莎草摇篮,在放进河里以前用沥青处理过。在没有天然沥青的地方,人们用木焦油来捻船缝,例如,8至10世纪时的北欧海盗的船只,就是用木焦油处理过的绳子来捻缝。
  现在,沥青的主要用途是拿来铺路。沥青最先用于这种目的可能是在巴比伦,在铺设供人们列队行进的马路时用它来作粘合剂。现在的柏油马路,是用沥青跟石子混合起来铺路面,再用压路机压平。麦克亚当虽然用自己的姓给这种方法命了名,却鼓吹用碎石铺路,压得很紧就行,无需粘合剂。事实上是特尔福德(1757~1834)发明的沥青路基。
  连接金属的焊料
  连接金属板的方法主要有四种:螺栓、铆钉、钎焊和熔焊。螺栓是在文艺复兴时期以后才盛行起来的,它是依靠螺纹来连接。熔焊是单靠热而不用焊料把金属连接在一起,它所需要的温度比用焊料要高得多。熔焊可能是铁器时代的真正产物。在图坦卡蒙的陵墓(约公元前1350年)中发现的用熔焊焊接的铁头靠 (它可能是叙利亚的进贡品)就是一个早期的例证。
  铆钉 (和销)以及钎焊,是古代最广泛地用来连接金属的方法。铆钉和销的使用比钎焊古老得多。人们并不认为铆钉难看,常常将其纳入整体设计之内。任何焊料的重要特点,都是它的熔化温度比要焊接的金属的熔化温度低得多。最早的焊料可能不是有意识地寻找到的,而是观察到不同来源的金
  (有些是金与银或铜的天然合金)有不同的熔化温度时偶然发现的。那时可用实验证明,改变焊料所含金的比例,除了能改变焊料的硬度外,还能改变焊料的熔点。在古代,焊料中的金属成分常常是金和银,金和铜,银和铜。焊料的选择必需小心谨慎,否则焊件会因过热而遭受损坏。到公元前 3000年,近东已经采用钎焊。钎焊的温度比金银制品的熔化温度还要低。现在,在不列颠博物馆内有乌拜德人伊姆一杜朱德的一幅铜板画(早于公元前3000年)。画上雄鹿的叉角就是用钎焊料一块一块地焊接起来的。硬焊可能是在同一时明前后出现的。一位权威断言说,到公元前2500年,乌尔城在金和银的焊接方面已经相当出名了。铜焊,顾名思义,是用铜和黄铜进行焊接的。它像钎焊一样,用途很广。但是,用硬焊料连接金属却是公元前1000年以后的事。
  塞利尼在其《金工专论》(1568年第1版)中极夸张地叙述了为法兰西国王铸造一尊银雕像的情况。他写道:“手臂、大腿和躯体,我都是一块一块锤打出来的,头部是一个整块,宛如一个花瓶……我把这几部分焊接起来,固定在一起……我所用的焊料叫做 ‘奥塔沃’——含八分之一盎司铜和一盎司银的焊料。为了进行钎焊,我把几根管子装到大风箱管上,管子制成能从放工件的煤床底部进行鼓风的长度。我用风箱鼓风,使焊料逐渐熔化。我不断鼓风,一会儿从上面进行焊接,一会儿从底部进行焊接,然后进行大部件焊接。著名的法兰西行家们在焊接大部件时未能取得成功……当然,塞利尼解决了这个难题。他采用的办法是首先用银丝焊接部件,然后用煤炭控制焊料的温度。”
  金属王国
  钢铁时代
  人类掌握了炼铜技术以后,为冶铁打下了基础。虽然,今天我们知道,铁是自然界中分布很广的一种金属,也是组成地壳的重要元素之一,但是,人类并没有在早期就使用铁,因为在自然界中几乎不存在天然的纯铁,而且铁矿石熔点较高,不容易还原出来。
  也许你不相信,人类最早发现的铁,还是从天上掉下来的呢!我们称这种铁为“陨铁”,它除了含有一点点镍以外,其余几乎全是铁。在各个文明古国中发现的最早铁器,都是用陨铁制成的,例如,古埃及人就曾把铁叫作
  “天石”或“天降之火”。
  当然,天上掉下来的陨铁很少,并没有给人类生活带来什么进展,但是,它却给人们打开了一扇认识铁的大门。
  “嗬,这铁可要比铜坚硬锋利得多了,用它做刀做斧一定十分合适。”人们是这样想的,也是这样做的。
  于是,人们借用炼铜的方法来炼铁,经过了几千年的艰苦探索,终于突破了炼铁所需的高温以及其他许许多多的技术难关,发明了炼铁的“固体还原法”。
  这种方法是先将铁矿石和木炭一层间一层地放在炼炉中,然后点火焙烧,利用木炭在1000℃高温下的不完全燃烧,产生一氧化碳,使矿石中的氧化铁还原成铁。由这种方法产生的铁夹杂的渣滓很多,看上去有很多孔洞,像海绵一样,显不出明显的金属特性,甚至还不如钢坚硬呢。
  大约在春秋战国时期,中国开始了炼铁,不仅仅使用“固体还原法”,还发明了“生铁铸铁法”。这一新的方法可使炉温高达 1200C,比“固体还原法”进了一步,距离纯铁的熔点1534℃也近了一点,从而炼出了液态生铁,使中国比欧洲国家早1000多年跨入了“生铁时代”。后来,欧洲人冶炼生铁,用的是把铁矿石、焦炭和石灰石混合后加热冶炼。
  今天,我们使用的炒菜铁锅用的就是生铁,又称铸铁,虽然它质地坚硬、却生性脆弱。为了克服生铁的这一弱点,人们又将它和铁矿石混合加热熔炼,使铁矿石中的氧和生铁中的碳化石,生成一氧化碳气泡释放出来烧掉,从而炼出了纯度高、强度大、质地软的熟铁,日常生活中的铁勺就是用熟铁制成的。
  生铁和熟铁各有其缺点,在性能上都比不上钢。中国早在汉代,就在世界上最先用“百炼钢法”炼出了钢。这种方法是在熟铁中再加进适量的碳,经过反复加热冶炼,尽量减少杂质,从而炼出具有更高强度和硬度的钢来。但是,这种方法的冶炼过程很复杂,一直未能发展起来。一直到19世纪前半期,人类始终生活在旧的“铸铁时代”。
  为人类带来崭新的钢铁时代的是贝西默。他于1813年1月19日出生在英国,但他酷爱法国,所以加入了法国国籍,他是一位对科学发明如痴如醉的著名学者,18岁的时候,贝西默经过努力,发明了一台自动印邮票的机器,接着又发明了一台制造金属粉的机器。
  19世纪50年代初,俄国和土耳其之间爆发了俄土战争,战事很快扩大到整个克里米亚,史称“克里米亚战争”。在此期间,贝西默根据科学原理发明、研制了一种新式步枪,这种步枪的枪膛中有来福螺旋线,子弹沿枪膛射出时旋转着飞出,更加稳定地沿着弹道前进。这种新式来福枪,射击距离增大了,命中率也明显提高了。
  “能不能运用同样的道理来制造新式大炮呢?”贝西默这样想着也就动手做了起来。
  不久,新式大炮问世了。起初,炮兵们反映新式大炮非常准确;然而,实战以后,问题便接二连三地传到了贝西默耳朵里:新式大炮很容易发生炸膛事故,炮手发炮时得冒着死亡的危险。有些军政要员说贝西默是个科学骗子,也有人怀疑他是隐藏在法国的间谍,秘密为英国服务。贝西默面临着巨大的精神压力,要求军方对事故进行仔细的调查。
  在贝西默和另一位法国大炮专家的共同努力下,问题找到了:原来,当时的大炮都是用铸铁制造的,但来福线对炮膛要求很高,如果炮弹与炮膛之间间隙过大,火药爆炸气体泄漏,炮弹旋转力量不足;如果炮弹与炮膛之间间隙过小,火药瀑炸使炮膛内压力骤然增大,结果炮膛内外温度不匀,造成炸膛。
  但是,大多数人不相信贝西默的解释,当局一声令下,新式大炮被打入了冷宫。贝西默花了多年心血研制的大炮,顷刻之间成了毫无用处的一堆废铁。
  怎么办?贝西默心想,只有突破材料难关,新式大炮才能起死回生。他决心冶炼出适合新式大炮的新材料来。从此,贝西默一头钻进了图书馆,广泛收集材料;又到冶铁厂,与工人们一同劳动;他还请冶炼工程技术人员为他讲课;……他简直成了一个“炼铁迷”。
  经过反复探索,在一位化学技师的帮助下,贝西默终于找到了铸铁不坚硬的原因——其中的含碳量太高。要减少含碳量,就必须设法在熔化了的铁水中加氧,燃烧掉这些碳!
  用什么办法加氧才能达到成本最低而又简便易行呢?贝西默看到,当一炉铁水熔化时,炉前工人往往就排渣出铁了,能不能在出铁前向铁水吹入空气呢?
  他就试着这样做了,顿时,通红的铁水沸腾了,钢花四溅,映红了夜空。贝西默炼出了铁匠们一致称赞的钢材。这种方法被称为“空气吹入法”。
  1856年,贝西默在铁匠业主行会上,报告了他的炼钢法,并将论文送到钢铁业十分发达的英国发表。
  “我认为,吹入空气除碳法是完全可行的,空气不仅能燃烧掉铁水中所含的碳,而且能够燃烧掉其他几乎所有不纯的物质,同时,燃烧释放出来的热量,又可以升高铁水的温度,这样,炼出的钢不仅质量高,而且成本也低。”贝西默对此信心倍增。
  经过贝西默的深思熟虑,他为他的“空气吹入法”设计出了一个特殊的转炉——样子像个梨,肚子大大的,口子斜斜的。开始,这种转炉是固定式的,4年以后,贝西默又发明了移动式转炉。
  贝西默的发明,引起了众多钢铁公司的极大兴趣,他们纷纷投资建起了一座座“高炉”,并且很快也出了钢。然而遗憾的是,他们发现炼出的钢都是劣等钢,不堪使用。人们群起而攻之,骂他是一个吹牛皮的人。有人联想起大炮事故,更加怨恨贝西默了。
  贝西默并没有因此而泄气,经过他的仔细分析,终于发现了问题的症结所在,冶炼出了优质的钢材。
  不锈钢的出现
  不锈钢是一种防腐蚀和耐高温的合金,其主要成分是铁和铬,还含有为了改进性能而掺入的其他元素。包括法拉第在内的若干发明家都在19世纪生产出了铁铬合金,然而他们制取的合金都不是钢。在本世纪,英国冶金学家哈德菲尔德竟得出了这样一个错误的结论:铬实际上会降低合金的抗腐蚀性。甚至在本世纪初,研制出了各种不锈钢的好些科学家 (其中包括法国的著名科学家吉莱和波特万)还不知道自己生产出的合金的突出性能,也就是说,不知道它能抗腐蚀,因此,不锈钢的发明史话曲折复杂。
  蒙纳茨和博尔歇斯这两个德国人首先认识到不锈钢的抗腐蚀性。蒙纳茨于1911年获得了生产不锈钢的德国专利。可是英国人布里尔莱——自修成功的冶金学家,约翰·布朗钢铁公司、托马斯·弗思钢铁公司和桑斯钢铁公司联合经管的一个研究所的所长——才是不锈钢的真正发明者。布里尔莱于1912年发现了重要的马氏体合金,并为制造海军用的枪炮研制出了一种坚硬的、有磁性的、抗腐蚀的钢。然而军事当局却不感兴趣,于是布里尔莱提出可用它来制造刀剑。糟糕的是,他的雇主们在没有让他知道的情况下擅自用他发明的合金制造了一些刀,并宣布这些刀不能用。
  布里尔莱并不气馁,他亲手制作了一些刀子,结果却出乎意料地成功。马氏体不锈钢的生产始于1914年。由于弗思钢铁公司认为不划算,放弃了不锈钢的研制,布里尔莱从其他方面获得了一些知识,于 1915年获得了生产不锈钢的美国专利。1920年,他的新雇主布朗·贝利公司大规模地引进了在马氏体合金的基础上研制成功的铁素体合金。这种合金既可以热加工,也可以冷加工,质软,特别适合用来制造建筑和汽车上的装饰物。
  许多发明家对不锈钢的研制工作做出过贡献。如果认为布里尔莱是单枪匹马地进行研究,他是一个被人误解的天才,就大错特错了。美国的贝克特对研制不锈钢曾起过重要的作用;印度发明家海尼斯早在 1884年就发明了一种生产钨铬合金钢的方法,他还是汽车工业的先驱者(他于1893年研制出了一种汽油发动机)。第三种不锈钢合金是奥氏体合金,耐高温,抗震,在食品工业上用得很广,通常是用来作化学设备和燃烧室。它是吉莱和吉森研制出来的,但是这两位发明家却不了解它的防腐特性。这种不锈钢的发明,主要应归功于德国克虏伯公司研究部的毛雷尔和斯特劳斯,因为他们在1912年首先生产出了这种不锈钢。
  现在生产的不锈钢有100多种,从宇宙飞船到珠宝的广大范围内都有用它制作的产品。
  超强度的钴钢
  钴钢是一种磁性很强的磁铁,它的发明者是日本的本多光太郎。本多光太郎1870年出生在日本的爱知县。当他在东京大学物理系研究学习时,他曾向长冈博士学习磁致伸缩现象,对金属的磁学有着深刻的见解和深厚的兴趣。
  随后,本多光太郎到了德国的格丁根大学留学,在德留学期间,他主要研究了冶金学和金属磁学。在金相的研究过程中,他改变了过去主要用显微镜观察金属表面进行热分析的方法,而是采用了热膨胀、电阻和磁的异常变化综合分析手段,精确地分析了温度造成的钢铁及合金金相的细微变化。
  钴钢正是在这种精确分析的基础上才发明出来的。
  1917年,本多光太郎和他的助手高木弘一起研制出了钴钢,其大致成份为碳1%,铬2%,钨6%,钴35%。他们将这种钴钢加热到930℃至970℃之间,然后立刻浸入油中进行淬火处理,这样便大大提高了钴钢的性能,成了世界上最强的磁铁。
  本多光太郎发明的这种钴钢,其强度超过了当时所有的钢种,引起了科学界和经济界的广泛注意。
  由于在钴钢的研制和生产过程中,本多光太郎曾得到实业家吉左卫门的援助,为了纪念这位好友,本多光太郎将这种钴钢命名为“吉左卫门钢”,简称KS钢。
  在本多光太郎的努力下,1919年,他又研制成比吉左卫门钢强度更高的新钢种。由于在这方面的杰出贡献,他曾获得了日本帝国科学院奖以及日本政府文化勋章呢!
  钒钢的发明
  事情发生在1905年,美国伊利湖畔繁忙的公路上,那天发生了一起严重的车祸:两辆汽车头尾相撞,后面又撞上了一连串的汽车,转眼间,公路上一片狼藉,碎玻璃、碎金属片满地皆是。
  事故发生以后,除了警察赶到现场以外,还来了一个汽车厂的老板,他就是后来闻名于世的汽车大王亨利·福特。
  福特为什么也急匆匆地赶来呢?
  原来,这位精明的老板希望从撞坏的汽车上找到一点别人的秘密。
  福特仔细地搜索着每一辆撞坏的汽车。突然,他被地上一块亮晶晶的碎片吸引住了,这是从一辆法国轿车阀轴上掉下来的碎片。粗看这块碎片并没有什么特殊之处,然而,它的光亮和硬度使福特感到,其中必定隐藏着巨大的秘密。
  于是,福特把碎片拣了起来,悄悄地放到了口袋准备带回去好好研究研究。
  回到公司以后,福特将这块碎片送到了中心试验室,吩咐他们分析一下,看看这块碎片内究竟含有什么东西?
  分析报告很快出来了,这块碎片中含有少量的金属钒;它的弹性优良,韧性很强,坚硬结实,具有很好的抗冲击和抗弯曲能力,而且不易磨损和断裂。
  同时,公司情报部门送来了另一份报告,其中认为,法国人似乎是偶然使用了这块含钒的钢材,因为同类型的法国轿车上并不都使用这种钢材。
  这一下,福特高兴极了。他下令立刻试制钒钢,结果确实令人满意。接着,他又忙着寻找储量丰富的钒矿,解决冶炼钒钢的技术难题,他希望早日将钒钢用在自己公司制造的汽车上,迅速占领美国乃至世界市场。
  福特终于成功了。他的公司用钒钢制作汽车发动机、阀门、弹簧、传动轴、齿轮等零部件,汽车的质量取得了大幅度的提高。
  几十年以后,福特汽车公司成了世界上最大的汽车生产厂商之一,福特曾高兴地说:“假如没有钒钢,或许就没有汽车的今天。”
  黄铜的用途
  黄铜是主要由铜和锌形成的合金,用途甚广,其性质取决于铜和锌的比例。含铜达63%以上的黄铜,可以冷加工,可以退火,有延展性;而含铜较少、含锌较多的合金,则应热加工,强度较高。
  由于我们不知道古人用什么方法来熔炼锌矿或菱锌矿,对古代使用黄铜的情况也不太清楚。锌的沸点比铜低,在加热铜时,木炭也会加热锌矿,很难不让锌蒸发掉。罗马人可能是最先大规模使用这种方法的人,但是熔炼青铜的匠人可能在此以前已无意中生产出了黄铜,因为锡与锌的区别,最初是不清楚的。我们应该注意,《圣经》里提到的黄铜,实际上都是青铜;称为哀斯的罗马硬币,也是用铜或青铜铸的,而不是用黄铜铸的。使事情变得复杂的是,他们确实曾利用黄铜来铸币,但是起初黄铜比铜或青铜都更昂贵。
  然而从中世纪起,在其未用来作壶和盘之前,黄铜是一种奢侈品,只用来作纪念性的墓碑之类的东西。从约公元1230年起,黄铜制品在欧洲流行了约 300年之久,因为它们比大型的雕塑品便宜得多。死于1231年的威尔普大主教的铜像,是人们所知的用黄铜制作的最早的铜像。铸造黄铜制品的过程是这样的:先把粉碎的锌矿和木炭跟铜块混合起来加热,使锌和铜结合在一起,再加热使合金熔融,然后将铜液灌入铸模。英国最早的黄铜器是进口的,主要是从图尔内进口。委托人可以从图尔内订购已经装在漂亮的底板或大理石底座里的完整的墓碑。制作铜制墓碑的办法,是先铸好铜像,通常还要铸好周围挑棚的剪影,再把它放在预制的石板里,用刀子在铜像上面刻出人的细部。有时铜像的手和面部要使用雪花石膏或其他镶嵌材料。铜像安全做好后,用装在铅栓里的暗销固定在石头底座上。铜像本身放在一层沥青上。很大的铜像就分段铸造,然后接合起来。
  泥中的“贵金属”
  铝,俗称“钢精”,在我们日常生活中是随处可见的:锅勺瓢盆、螺丝铆钉、冰箱摩托,甚至飞机飞船,哪个身上没有铝的影子?
  然而,如果说铝曾经像黄金一样贵重,你一定不会相信,但这确是事实。就在100多年以前,如果谁说要用铝来制造一只锅或一只盆,那他一定会被人耻笑,被人视为“空想家”,因为那时候,铝是一种十分稀罕的贵金属,
  “物以稀为贵”嘛!
  当时,铝的贵重我们从拿破仑三世的头盔上便可见一斑。拿破仑三世是声名显赫的拿破仑一世的侄子,是当时的法国国王,也是极其奢侈的一个人。
  19世纪中叶的一天,巴黎凡尔赛宫内正在举行规模盛大的宴会,庆祝法国将其势力范围扩大到了印度支那和西非。作为国王的拿破仑三世自然是众目睽睽的“伟大人物”。
  在众人的欢呼声中,拿破仑三世红光满面,神采奕奕。人们惊讶地发现,国王头上并没有戴金皇冠,而戴了一顶银光闪闪的新皇冠,这是用什么材料制作的呢?人们议论纷纷。
  原来,为了这次宴会,也为了显示他的荣华富贵,拿破仑三世特地叫工匠们制造了一顶铝盔;同时,他还特地让人打制了一套铝的餐具,当然,这套餐具也仅在盛大的宴会上,他才舍得拿出来使用。
  其时,除了拿破仑三世,泰国国王也用过铝制的表链。1855年,在巴黎举行的世界博览会,有一小块铝被放在最珍贵的珠宝旁边,它的标签上写着:
  “来自粘土的白银。”直到1889年,“元素周期律”的发现者门捷列夫还曾得到由伦敦化学学会送给他的用铝和金制成的贵重花瓶和杯子作为礼物呢!
  由此可知,铝在当时是珠宝店里的宠儿,也是帝王贵族的珍宝。我们从铝的价格上也可得知它当时的身价:每千克铝的价格为30000金法郎,而每千克黄金的价格却只有它的 1/3。现在我们不难理解拿破仑三世的得意和伦敦化学学会的苦心了吧!
  为什么到了19世纪中后期,铝还如此稀罕呢?原因是铝的提炼实在太困难了。
  其实,地球上的铝是十分丰富的,我们脚下的泥土就是蕴藏丰富的铝矿,铝占整个地壳重量的8.23%,差不多比铁的含量多一倍!
  早在17世纪,德国化学家斯塔尔就察觉到明矾内含有一种与普通金属迥然不同的物质,斯塔尔的学生马格拉夫终于在 1754年从明矾中分离出了“矾土”,就是氧化铝。当时,许多有名的化学家都认为矾土是一种不能再分的元素,英国化学家戴维和贝齐里乌斯都曾经企图利用电流从铝矾土中分离出金属来,但均没能成功。但贝齐里乌斯为铝所起的英文名字却一直沿用至今。
  从矾土中炼出金属铝,成了许多化学家追求的目标,丹麦科学家奥斯特便是其中之一。
  奥斯特曾以他“电流的磁效应”而闻名于世。1820年,他便把自己的科研兴趣转移到了化学方面。这一年,他发现了胡椒中刺激性成份之一的胡椒碱,这大大激发了奥斯特从事化学研究的兴趣,他决心将矾土中的金属铝提炼出来。可是,如何提炼呢?
  铅是用木炭从铜矿石中炼出来的,铁也是用木炭从铁矿石中炼出来的,那么,用同样的方法能不能从矾土中出铝来呢?”奥斯特一边翻阅着有关书籍,一边思考着实验的步骤。
  于是,他先把木炭成粉末,将它和矾土混合在一起,架起火来烧。然而,木炭烧尽了,矾土照样还是矾土。
  “这种办法看来不行。”奥斯特又陷入了沉思,“会不会是存在空气的原因遭致失败的呢?不让它们在空中燃烧会产生怎样的结果呢?”
  他又重新将木炭粉末和矾土混合起来,并装在密封容器内,外面燃火猛烧。几个小时过去了,奥特斯将容器打开时,结果仍旧让他感到失望。
  “用氯气来代替氧气行不行呢?或许,氯气比氧气更容易与铝发生化学反应呢!”奥斯特又沿着他的思路干开了。他把矾土和木炭混合,加热烧到通红,再通进氯气。嘿!终于有了变化。奥斯特发现有一些液体流了出来。
  后来,他才了解到这种液体原来是氯化铝。他小心翼翼地将氯化铝收集起来,用钾汞齐来和它发生反应,他得到了氯化钾,同时产生的则是铝汞齐。
  奥斯特又如法炮制,对铝汞齐进行加热,希望将汞蒸发掉,提炼出金属铝。可惜的是,在汞蒸发的同时,铝却又回到了矾土。为此,奥斯特白白浪费了许多时间。
  吃一堑,长一智,奥斯特决心重新再来。这次他打算让铝汞齐在隔绝空气的情况下进行蒸馏。果然,在除去汞之后,他得到了一种具有金属光泽的、和锡相似的金属。
  奥斯特高兴极了,他把自己的实验结果写成论文,寄给丹麦的一份化学杂志。然而,很少有人注意到奥斯特和他的论文,这使奥斯特感到了十分失望,转而去研究其他项目了。
  1827年,奥斯特在他哥本哈根住宅的花园里,接待了一位来自德国柏林的化学家维勒,两个人在一棵枝繁叶茂的橡树下进行了亲切的交谈。
  “奥斯特先生,我虽然是一个外科医学博士,但我对化学很感兴趣,决心献身于化学。”维勒坐在奥斯特的对面面含微笑地说,“不久前,我在柏林工艺学校图书馆里,偶然翻到一本丹麦杂志,其中有您的一篇论文。不知您现在是否还在研究矾土。”
  “啊,年轻人,欢迎你来到哥本哈根。那篇论文是我几年前写的,我早就停止了这项研究。哎,请喝咖啡。”奥斯特端起桌上的一杯咖啡,呷了一口,“说实话,那或许是一次不成功的尝试而已。后来,由于我在电磁学方面还有许多工作要做,只得停止了对矾土的研究。如果你愿意,我可以把我的资料送给你。”
  “那太好了,奥斯特先生!我真不知如何感谢您才好。”
  “不必不必!只要你将成功的消息告诉我就行了。”
  从哥本哈根回到柏林,维勒便全身心地投入到矾土的研究中去了。他白天在工艺学校教化学,晚上还要为成年人授课,只有在授课以后,他才有时间走进实验室,对矾土进行研究。
  开始,维勒照着奥斯特的方法进行,但很快,他便发现此路不通,因为对铝汞齐进行蒸发产生的蒸汽有毒,不可能用于大规模的生产上,他决定另辟蹊径。
  到了这一年的冬天,维勒的研究终于有了进展。他将明矾溶液煮沸,然后将热的碳酸钾溶液慢慢地倒进去,眼看着有白色沉淀产生,而且越来越多,在煤气灯的加热下翻腾不息。
  维勒仔细地把沉淀物过滤出来,冲洗干净,和木炭粉、糖、油等混合成糊状物,放进坩锅内加热,同时通入氯气,这样,他得到了氯化铅。下一步怎么走呢?用什么方能将金属铅提炼出来呢?维勒用了各种方法,如空气、木炭,但都以失败而告终。
  最后,维勒想到了金属钾。他把钾和氯化铅混合后,放在用白金做的坩埚里,严密封盖后加热,坩埚内反应激烈。等了一段时间以后,维勒将坩埚冷却,将里面的东西倒入水中。嗨!水中有了一些银灰色的金属粉末。
  “这肯定就是我日思夜想的铝!”当然,这些铝很不纯净。为了获得纯净的铝,维勒化了一年又一年的时间。一晃18年过去了,1845年,维勒在给他的朋友、德国化学家李比希的一封信中这样写道:
  “我找到了制取铝的方法,制得别针头大小的粒状。这种金属容易弯曲,锌白色,易溶于碱,特别易溶于盐酸。”
  但是,维勒的这种炼铝方法也不可能应用于大规模的生产,他只是给炼铝的方法领到了一张“出生证”。
  在发明炼铝方法的漫长过程中,德国化学家本生和法国化学家德维尔也作出不可磨灭的贡献。
  本生的方法比较简单而且独特,他利用当时已经被人广泛使用的电池对氯化铝和氯化钠组成的复盐进行分解,果然获得了铝,时间是在 1854年。只是由于电池的功率太小,不可能利用它进行大量的生产。本生发明的这种方法其实为以后大规模的生产奠定了基础,指明了方向。
  也是在1854年,法国的德维尔殊途同归,炼得了成块的金属铝,事情的经过是这样的。
  德维尔出生在美国,10岁那年与哥哥远涉重洋,回到了父母的故乡——法国巴黎,接受正规的教育。
  在大学,德维尔学的是医学,但他并不满足,还广泛涉猎其他学科,尤其是化学。
  1851年,德维尔在了解了一些有关炼铝的情况以后,提出了这样一个问题:“既然书上说铝和铁的性质非常相似,为什么会有亚铁化合物而没有亚铝化合物呢?我能不能制取它呢?”
  这一念头激起了德维尔深入研究的热情。当他知道维勒已成功地制取过金属铝珠时,他信心大增了:“利用维勒的方法,稍加改进,我或许就能制取亚铝化合物呢!”
  德维尔比维勒的研究时间要晚20多年,实验条件自然也要好得多,首先实验所需的金属钾就要多得多。他在一支白金管内装满了钾,并让管的一端与装有氯化铝的陶瓷容器相通,加热陶瓷容器,氯化铝的蒸汽就进入了白金管,与钾发生化学反应,结果他获得的还是铝,并没有什么亚铝化合物。
  多次的不成功使德维尔放弃了原先的念头,转而研究起了铝。他希望法国政府能出资帮助他发明大量生产铝的方法,但是除了国王的科学顾问杜马的口头支持以外,他一无所获。德维尔决心依靠自己的力量,生产出铝块,让事实说服国王。
  经过3年的反复研究,1854年,德维尔终于找到了一种较快制取金属铝的方法了,他能在一天时间内制造出一块大铝锭了。
  德维尔将他的这种轻而贵的金属通过法国科学院转给了国王拿破仑三世。国王欣喜万分,叮嘱工匠们为他打制了一顶铝盔和一套餐具,出现了本章开头的那种金碧辉煌的场面。
  为了用这种“贵金属”制造兵器,国王希望德维尔在热维利亚兵工厂进行试验,并答应用第一批生产出来的铝制造一枚奖章,奖给德维尔。1855年7月18日,热维利亚兵工厂终于生产出了第一批铝锭。在德维尔的劝说下,这枚铝质奖章上刻了“弗里德里希·维勒,1827”几个字,以示他对维勒的尊敬。
  虽然,德维尔为批量生产金属铝作出了重要贡献,但当时铝的价格还贵得惊人,根本不可能用来制造兵器,只能用来打制珍贵的首饰。直到 1886年,两位年轻人终于实现了人类梦寐以求的理想,发明了价廉量大的炼铝新方法,他俩便是美国的豪尔和法国的埃罗。当然,他们是各自独立发明的,这一年,他俩都只有23岁。
  豪尔是美国俄亥俄州奥柏林学院化学系的学生,他在课堂上就听老师介绍过金属铝的优良性能、提炼铝的艰难以及它价格的昂贵。
  “如何才能制得价格低、批量大的金属铝呢?”这一问题始终在豪尔脑海里萦回,“能不能用电试一试呢?不是有人已用电制取了钾、钠等金属吗?”
  于是,豪尔开始对矾土进行通电电解,结果却大失所望:矾土根本不导电,通再长时间的电也是白费劲。怎么办?
  偶尔,豪尔在一本旧文献中读到了德维尔的一份实验记录,上面写着:
  “格陵兰伊维图特生产一种矿物,外形与冰相似,叫作冰晶石,冰晶石中含铝,熔点较低,可用来炼铝。”
  这真是“踏破铁鞋无觅处,得来全不费功夫”啊!豪尔马上找来了冰晶石,并和矾土一起加热熔融,居然成功了。他立刻插进电极通电,电极上出现了一层薄薄的闪着银白色光泽的金属,豪尔立刻兴奋了起来。可惜,好景不长,电极一会儿就熔化了,原因是温度太高。
  “如何才能降低熔点呢?”豪尔陷入了深深的沉思。
  1886年2月23日,豪尔手握着一个银光闪闪的铝球冲进了他老师的办公室,一时激动得说不出话来。老师看着这一切,心里全明白了。
  原来,这一天豪尔做第 103次实验时,在冰晶石里加进了氯化钙,再加入矾土,终于把熔点降了下来,通电以后,成功地提炼出了日思夜想的金属铝。
  无独有偶,几乎同时,在大洋彼岸的法国桑特一巴比学院里,青年化学家埃罗在电解冰晶石时发现,电解槽内的铁阴极突然熔化了,按当时的温度,铁是不会熔化的。埃罗断定,铁一定是变成了某种合金。
  几天以后,埃罗又把氯化铝钠加到电解槽内,希望能降低温度,不料他又发现,碳电极被腐蚀了。他推断这可能是由于氯化铝钠吸收了潮湿空气,生成了氧化铝,氧化铝又被电解成铝和氧气的缘故。埃罗也异曲同工地发明了电解法炼铝的新工艺。
  豪尔和埃罗的成功,加上电力工业的迅速发展,使金属铝终于走出了深宅大院,来到了平民百姓家,成了人们日常生活中的一个好伙伴。
  自1886年埃罗等人发明了电解法炼铝以后,世界各国几乎都应用这一方法。然而,人是不知足的,总要想方设法发明新的炼铝方法,日本的桑原谦之便是其中之一。
  1981年4月,日本专利公报公布了一个令人振奋的消息:日本三井氧化铝制造株式会社经理桑原谦之发明了一种高炉炼铝法。
  消息传开,人们纷纷打听:桑原谦之是何许人?他怎么会想到用高炉炼铝的?他又是如何发明高炉炼铝法的?……
  不久,新闻记者就在报上公布了桑原谦之发明高炉炼铝法的前前后后。
  原来,桑原是一个壮实的中年人,大学毕业,曾获得过冶金和经营管理方面的大学学历,他精力充沛,好发奇想,常常做出普通人想不到的事情。大学毕业以后,桑原进入了三井集团的氧化铝制造株式会社工作,他的干劲和能力很快获得了上司的赏识,没过几年,就被提升担任经理要职。
  三井氧化铝制造株式会社主要是从澳大利亚进口铝土矿,经过精炼加工制成氧化铝粉末,然后再卖给制铝厂炼铝。为了洽谈生意,桑原经理常常出差去各地。有一次,他路过一家规模庞大的钢铁厂,看到巨人般的炼铁高炉巍然矗立,一个新的念头便油然而起:“能不能用炼铁高炉来炼铝呢?一个高炉每天能炼上万吨铁,相比之下,炼铝厂实在太小了,全日本的炼铝厂产量还抵不过一座大型炼铁高炉呢!而地球上铝的含量却比铁要多,要是能用炼铁炉炼铝那就好了。”
  回到公司,桑原经理立刻通过电子计算机调集了有关资料,原来高炉炼铝存在几大难处:一是铝土矿熔点远比铁矿石高,难以熔化;二是铝土矿内除了氧化铝,还含有氧化铁和石英砂,分离比较困难。
  原来如此!桑原经理决定建造一座小型耐高温高炉,进行炼铝试验。不久,高炉建好了,铝土矿和焦炭从高炉顶部加进去、强大的热风从炉底一个劲往上吹……测量仪表传来信息:高炉上层温度已达500~1200℃,中层已达1600℃,下层达到了1900~ 2100℃.
  “继续加料,继续鼓风。”桑原经理下令道。
  几小时以后,他一声令下:“开炉出铝!”
  炉门打开来了,一股闪着银光的熔液奔流而出,冷却以后,迅速送去分析:这是一种含有铁和硅的铝金属,含铝约60%。
  第一次试验成功了,以后便是如何进一步提纯。桑原决定先用铅将铝从铁和硅的束缚下“解放”出来,因为铅的熔点低,容易和铝结合成合金,更重要的是,美国和法国具有分离铅铝合金的成功经验。经过多次试验,这一方法终于成功了,而且他在铝镜制造法的启发下,发现铅在高温下不易蒸发,而铝则很易蒸发,这样便轻而易举地解决了从铅铝合金中提炼高纯度铝的难题。一座专门用来分离铅、铝的真空炉造了出来,提炼出的铝纯度达到99.9%。
  高炉炼铝法节省了许多人力物力,为人类进一步开发利用铝资源开辟了一个新天地。
  21世纪的金属
  1964年8月18日上午,前苏联首都莫斯科的普罗斯克特米拉广场上,正在举行一个隆重的典礼。
  政府高级官员、红军将领、各国外交使节数百人团团围住一座用红色丝绸包着的建筑物;武装士兵们神情严肃,举手敬礼;行人则驻足观望着……嘹亮的军号声中、丝绸缓缓滑落,一枚银白色火箭展现在人们眼前,原来,这是前苏联政府建立的火箭式航空航天事迹纪念碑。
  如今,30多年过去了,人们发现尽管这枚火箭遭到过风霜雨雪的袭击,经受过污染空气的考验,它仍然是那么光洁明亮,引人注目。它是用什么材料制作的呢?
  钛!这是一种被人美誉为“大地女神之子”的金属,是一种21世纪的金属。然而,人类在发明炼钛的过程中也是历经艰难啊!
  早在18世纪末期,在英国康瓦尔郡梅纳辛教区,住着一位受人尊敬的牧师格列高尔。
  格列高尔个头高大,面容慈善,是一个博学多才的人,他不仅是康瓦尔郡地质学会的创始人,也是技术精湛的分析化学家,因此,格列高尔特别喜欢收集石块。他经常去周游英国各地,采集各种石块,然后带回来分门别类地进行研究。
  1791年春天的一个傍晚,格列高尔在故乡的梅纳辛河谷发现了一种从未见过的石块,外表黝黑,带有磁性。
  “这种石块我倒还是第一次见到,真奇怪!”格列高尔对着这种石块端详了半天仍一无所知。
  经过分析,他发现石块中除了常见的磁铁矿成份和硅石成份外,还含有一种棕红色的矿渣粉末,它是什么?
  格列高尔将这种未知的粉末提取了出来,将粉末投入硫酸,它溶解了,得到一种黄色的溶液;再投入锡粒,溶液变成了紫色;投入锌粒,溶液也变成了紫色。这紫色溶液内含有什么东西呢?
  格列高尔又去查阅了有关文献资料,结果也是不得而知。他想,这棕红色粉末肯定是一种未知的金属矿物,这种金属具有当时所有已知金属都不具备的性质。
  “那么,就叫它梅纳辛矿石吧。”格列高尔以他故乡的名字来命名这种石块,并将自己的发现写成论文,寄给了有关的科学刊物。论文在 1791年就发表了,但当时的英国科学界,有谁会对一个乡村牧师的论文感兴趣呢?
  4年以后的1795年,从匈牙利布伊尼克地区运到德国的一种红色的“金红石”矿石,引起了柏林大学化学系马丁·克拉普罗特教授的极大兴趣,他的印象中这种矿石似曾相识,经过查阅,果然它和梅纳辛矿石很相像,只是从外表上看,前者为红后者为黑。
  经过分析,这位德国化学界的权威认为:梅纳辛矿石是由于含磁铁矿成份才变黑的,两种矿石所含的棕红色粉末中含有一种未知的金属。
  富于幻想的克拉普罗特给这种新金属取了一个美丽的名字——钛,它取自希腊神话中大地女神之子的名字“泰坦”。
  克拉普罗特希望自己能亲手把钛从金红石中提炼出来,但是,一次又一次的努力总是归于失败。
  为了获得第一个提炼钛的殊荣,各国化学家们展开了一次竞争。为了第一个发明炼钛的技术,他们运用了种种方法来对付金红石。许多次,有人声称自己成功了,但事实证明他们得到的并不是钛,而是钛和其他金属的化合物。这些人中包括当时声名显赫的瑞典科学院院长、著名化学家贝采里乌斯等。
  这种状况持续了将近100年,直到1875年事情才出现了转机。
  这一年,俄国化学家基利洛夫成了幸运儿,他第一个设法制取了金属钛,虽然当时的纯度相当低,但人类总算第一次看到了这位“大地女神之子”的真面目。基利洛夫为此写了一本书——《钛的研究》,书中详细介绍了他的研究成果。然而,沙皇政府对此并没有重视,他的成果如同格列高尔的论文一样,犹如石沉大海。
  又过了12年,瑞典两名化学家尼尔森和彼特森设法制取了四氯化钛,怎样进一步将钛从四氯化钛中“解放”出来呢?
  他们想到了生性活泼的钠,用钠去取代钛,或许能成功。他们在一只密封的钢瓶里,开始了这一项工作,果然成功了,他们制取的钛纯度达到了95%。
  以后,又一名法国化学家亨利·莫伊桑花了九牛二虎之力,将钛的纯度提高到了98%。能不能将纯度再进一步提高呢?
  1910年,从大洋彼岸传来了好消息:美国化学家亨特借鉴尼尔森和彼特森的方法,首先尽可能净化四氯化钛和金属钠,然后再将它们混和后放入钢瓶里,终于制成了纯度达到99.9%的金属钛,重量还不到1克。
  “大地女神之子”终于来到了人间。
  但是,直到19I0年,钛在人们的眼中也还只是一个强度低、性质脆的“丑八怪”,人们一直以为钛经不起机械加工,只能制造一些运转速度极其缓慢的机械零件。
  这实在是对钛莫大的误会。亨特当时虽然制得了纯度达 99.9%的“纯”钛,但是实际上,正是这0.1%的杂质使钛丧失了英雄本色,连亨特本人也怀疑自己花了那么大的力气是否值得。
  是金子总要闪闪发光的。1925年,荷兰科学家阿克尔和德博尔联手合作,为“大地女神之子”拂去了脸上的灰尘,终于使钛显露了英雄本色。
  其实,阿克尔和德博尔对钛早就心存仰慕之情了,他俩坚信钛是一种大有作为的新金属,因此他们四处收集资料,潜心研究制取纯钛的办法。
  1925年,他俩经过反复研究,认为钛的纯度不仅与原料四氧化钛的纯度有关,而且与还原剂也有关。当他们选用加热的钨丝作为还原剂时,竟然真的炼出了高纯度的钛:它银光闪亮,具有很大的可塑性,可以轧成棒、压成板、抽成丝,甚至可以制成比纸还要薄的钛箔。这真是太奇妙了,千呼万唤始出来啊!
  钛是一种并不稀有的稀有金属,据估计,钛约占地壳总量的千分之六,比铜、锡、锰、锌等在地壳中的含量,要多几倍甚至几十倍呢!就连陨石中也含有钛。但正是由于钛的提炼太困难了,至今人们还把它看作是一种稀有金属。
  1947年,人们才开始在工厂里冶炼钛,当年全世界的产量只有2吨;1955年,产量激增到2万吨;1972年,年产量达到了20万吨。
  钛难于提炼,主要是因为它在高温下化合能力极强,可以和氧、碳、氮以及其他许多元素化合。因此,不论在冶炼还是铸造时,人们都小心地防止这些元素侵袭钛。现在,人们是利用镁与四氯化钛在惰性气体氦或氩中相互作用来提炼钛的。正因为提炼钛很复杂,又要消耗很多贵重的原料,所以它的成本很高。
  钛为什么如此受人欢迎呢?因为它的比重小,强度高、耐高温、抗腐蚀性强,是一种非常理想的金属。
  钛的硬度与钢铁差不多,而它的重量几乎只有同体积钢铁的一半;钛虽然比铝重一点,它的硬度却比铝大两倍。现在,在宇宙火箭和导弹中,就大量用钛代替钢铁,极细的钛粉,还是火箭的好燃料呢!由此,钛被誉为宇宙金属、空间金属。人们还用钛制造了钛飞机,这种飞机有95%的结构材、料是用钛做的。
  钛的耐热性很好,溶点高达1725℃。它在强酸、强碱溶液中可以安然无恙,甚至王水也奈何它不得。有人曾把一块钛沉入海底,5年以后取上来一瞧,上面粘了许多小动物和海底植物,却一点也没有生锈,依旧亮闪闪的。用钛制造的潜艇,不仅不怕海水,而且能够承受高压,这种钛潜艇可以在深达4500米的深海中航行,那里的压力之大是普通潜艇承受不了的。
  更有趣的是钛在医疗上的应用:在人体骨头损坏的地方,填进钛片和钛螺丝钉,过了几个月,骨头就会重新生长在钛片的小孔和螺丝钉的螺丝中,新的肌肉纤维就包在钛片上面,这种“钛骨”与真的骨头可没什么不同呀!
  有人将钛称为“21世纪的金属”,这一点也不夸张啊!
  轻纺专行
  蜘蛛和蚕儿的启示
  你听说过“小小诸葛亮,稳坐军中帐,摆起八卦阵,单捉飞来将”的谜语吗?你知道谜底是什么?谜底是蜘蛛。蜘蛛这一不起眼的小东西,还曾经当过人类的老师呢!人们捕鱼用的鱼网,就是我们的老祖宗从蜘蛛织“八卦阵”得到的启示。后来人们发明的人造纤维——人造丝,也有它的一份功劳哩。
  这话说起来就长了。早在300多年前,法国有一位科学家叫卜翁,因为要探索蜘蛛吐丝结网的奥秘,弄了好多蜘蛛,进行反复实验。如果发现,蜘蛛的小圆肚子里有许多粘液,在它的肚子上还有一个开口,中间有许多小孔。蜘蛛把肚子里的粘液通过这些小孔,喷射到空气中凝结起来,就是蜘蛛丝了。这么细的一根蛛丝,其实还是由好几百根细丝合起来的。
  卜翁想:这样细的蛛丝织成的衣服一定很漂亮。于是,他剖开蜘蛛的肚子,挤出粘液,再让粘液通过一个个小孔压出来,果然成了一条条细丝。这些细丝晶莹透明,洁白漂亮。卜翁就用这种“细丝”织成了世界上第一副人造丝手套。据说,这手套至今还陈列在法国的博物馆里。
  只是,蜘蛛肚子里的粘液实在太少了,为了得到一副手套,得养上万只蜘蛛,如果生产成千上万件衣服,也用这种方法来获得“人造丝”,这实在是不现实的。
  1855年,有一位名叫奥捷玛尔的法国科学家开始仔细研究蚕儿吐丝的问题。他想:蚕儿吃的是桑叶,吐出来的是丝。能否仿照蚕儿的法子,把桑叶变成丝呢?
  于是奥捷玛尔一头钻进实验室,开始试验。结果发现桑叶的主要成分是纤维素,蚕丝却是一种蛋白质。蛋白质比起纤维素来多含了一种叫“氮”的化学元素。
  能不能用人工的办法,把氮加到桑叶中去把它变成丝呢?
  奥捷玛尔把从桑叶里取出来的纤维素,浸在硝酸里,因为硝酸里有大量的“氮”。
  啊,成功了,桑叶真的变成了粘液!奥捷玛尔接着把这种粘液通过小孔压出来了,果然成了一根根连绵不断的细丝,比起卜翁从蜘蛛身上获得的人造丝,这才是最早的人类自己制成的真正的人造纤维——人造丝。
  通过人造丝的发明,人们认识了事物的本质:真正用来制造人造纤维的原料的只是桑叶中的纤维素,而蚕儿之所以食用桑叶,是因为家蚕的祖先是野蚕,野蚕本来是桑树的寄生虫,野蚕被驯养成家蚕后,仍保持着它在大自然中千百年来所形成的偏食习惯——只吃桑叶。
  显然大自然中含有天然纤维素的物质都可以作为人造纤维的原料。打那以后人们就开始试用木头、芦苇、竹子、棉花杆、棉短绒以及甘蔗渣等这些天然纤维素为原料制造人造纤维。
  1884年,科学家从在实验室里少量试制人造纤维扩大为工业规模的生产。这第一种投入生产的人造纤维就是硝酸纤维。一开始由于这种硝酸纤维容易燃烧,成本又高,没有得到很快发展。
  1891年,人们接着试制成功了另一种人造纤维——粘胶纤维。粘胶纤维的发展很快,产量最大,占人造纤维总产量的1/4,我们先来谈谈它吧。
  从纺丝机中出来的粘胶纤维,是连续不断的长丝,它的性能近似于蚕丝,被称为“人造丝”。如果把粘胶长丝切短,制成长短粗细近似于羊毛的短纤维,就叫“人造毛”,长短粗细近似于棉花的短纤维,就叫“人造棉”。
  人造棉纤维细而软,织成布,布面均匀细洁,身骨柔软,挺像纺绸,加之人造棉染色性能好,特别是1958年我国制成了新型的活性染料以来,印染出来的人造棉更是五光十色、鲜艳多彩。用它制成春、夏穿的衬衫和裙子,凉爽飘逸,深受人们欢迎。
  人造丝酷似蚕丝:轻、柔、滑、软、坚牢,而且成本比蚕丝低廉得多。目前我国已大量生产各种用人造丝织造的纺织品,如美丽绸、富春纺、麦浪纺、乔期纱、无光纺、光纺等投入市场。
  人造毛是人造羊毛的简称,其长度、细度、卷曲度与羊毛相似,常见的人造毛哔叽、华达呢、毛毯都是用人造毛织成的。人造毛透气性能好,穿着舒适,没有气闷感觉,染色性能也好,比羊毛耐虫蚀,不易断裂。
  粘胶纤维还能加工制成各类包装用的玻璃纸。据统计,全世界每年用于制玻璃纸的粘胶纤维约10万吨以上。
  在人造纤维中,坐第二把交椅的是醋酸纤维,醋酸纤维除可加工制造成各种纺织品外,还可大量地用来制造电影胶卷——片基。
  铜氨纤维是早在1899年投入工业生产的另一种人造纤维。这种纤维因为比蛛丝还细,所以常被织成透明的围巾、袜子。用它做成的衬衫、汗衫、窗帘真是“薄如蝉翼”。
  还有一种人造蛋白纤维也属于人造纤维,在40年代发展很快,性能与天然羊毛极为相似,我们称之为乳酪纤维或酪素纤维。
  人造纤维正式投入工业规模的生产成为人造纤维工业只是近60年的事。其发展规模和速度却是十分惊人的,特别是在40年代一下子从占世界纤维总量3%跃为13.2%,10年中增加10.2%。现在,全世界人造纤维的品种约有 20多种,约有50多个国家生产人造纤维。如果说树叶与兽皮是衣服
  “古代史”的“主角”,棉、毛、丝、麻是衣服“近代史”的“主角”,那么人造纤维就是衣服“现代史”上的“主角”了。
  尼龙创造奇迹
  1978年8月11日晚,在朦胧的月色中,一只体积达5000立方米的巨大气球在美国东部缅因州的大西洋岸边腾空而起。3位美国探险家驾着这只名叫“双鹰2号”的庞然大物,开始了一次充满危险的航行;横跨烟波浩渺的大西洋,飞到欧洲大陆去!
  航行的开端似乎很顺利,“双鹰2号”在一股从美洲吹往欧洲的高空气流的推动下,轻盈地向东飘去。可不久,大西洋上多变的气候随即显出了它狰狞的面目:上升的气流时而把气球带上几千米、甚至上万米的高空,那里的低温几乎把人冻僵;下降的气流时而又把气球压向海面,随时有坠落海中葬身鱼腹的可能;在突如其来的狂风骤雨袭击中,气球更像一叶扁舟似的,孤独无援地在惊涛骇浪中颠簸……
  幸运的是,在和大自然博斗了6天6夜之后,气球终于到达了大洋彼岸。8 jJI7日傍晚,“双鹰 号”安全降落在法2 PI巴黎西北约 100公里的一个小镇旁。这是一次不寻常的飞行,时间长达137小时,航程5000多公里,一举创造了载人气球飞行距离最远和留空时间最长两项世界纪录。
  “双鹰2号”创造的奇迹,很大程度上要归功于气球的制作材料。它那用尼龙制作的球体经受住了大西洋恶劣气候的嬉弄。而在此之前,用其他材料制作的气球都未能经受住这严峻的考验,几乎都在途中就成了碎片,为此葬送了不少探险家的生命。
返回书籍页