必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

工业创造与发明

_4 佚名(现代)
  直升飞机玩具在17和18世纪越来越普遍;1796年,法国学者洛努瓦和比安弗尼,设计了一个用弓钻机械操作的双旋翼模型。这种模型为凯利于1809年所推广,此后经常为人们所仿制,竟成了制造直升飞机的人吸取灵感的主要泉源。在19世纪,有许多直升飞机的模型试飞成功。接着在1907年,在汽油发动机臻于完善之后,有两架载人的飞机成功地从地面上垂直起飞:布雷盖兄弟于9月在杜埃首先从地面垂直起飞,然而这次却名不符实,因为有人从地上使其稳定;科纽的双旋翼直升飞机于11月在利利克斯附近起飞,而这次飞行却没有外力的帮助。
  直升飞机的发展通过了一个过渡阶段才达到实用阶段;过渡阶段的直升飞机是西埃瓦旋翼机,这种飞机于1923年开始试飞。西埃瓦看到,要研制成功一种实用的直升飞机,在动力装置和旋翼叶片的控制方面会遇到一些难以解决的问题。直升飞机本身靠旋翼产生升力,又靠旋翼推进;它不仅能垂直起落,还能悬停。因此,西埃瓦设计了一个正规的飞机骨架,在头部装上一台牵引式螺旋桨和发动机,然后在机身上装上能自由旋转的旋翼叶片,而不是装上普通的机翼。当飞机在螺旋桨的推动下前进时,旋翼叶片就飞速转动,给飞机提供升力。但是,通过离合器和发动机连接的旋翼,经过初步加速后脱离接触,这样,旋翼机便能在地面上滑跑数英尺之后冲向天空。它也能在陡度很大的情况下着陆,但不能垂直着陆和在空中悬停。
  最初的完全实用的直升飞机,是德国人福克—阿赫格利斯研制成功的FL—61型。后来,西柯斯基又研制成功了VS—300型这种最早的单旋翼直升飞机。此后,直升飞机经历了长期的连续发展,终于成了一种新型的重要飞机。
  直升飞机的发展虽然比飞机发展缓慢,但至今也发展到了第四代。换代的标志是发动机和旋翼材料这两个重要方面的进步。
  从第一架直升机的诞生到1955年,这是第一代。这时直升机用的是活塞式发动机,旋翼是木质的。它飞行速度不快,大约只有每小时200公里左右;使用寿命也不高,大约为600小时左右。如美国1954年生产的S—58,虽然旋翼改成金属的,但发动机还是活塞式的。美国早期生产的贝尔—47和前苏联早期生产的米—4都是第一代的典型机种。
  从1956年到1965年,第二代直升机出现了。它们普遍采用喷气式发动机,旋翼全都采用金属材料,速度达到每小时250公里,寿命增到1200小时。如1961年生产的米—4,旋翼就改为金属材料了。前苏联1957年生产的米—6,装有喷气发动机,旋翼材料为钢梁、金属面。1962年试飞的米—8也是喷气直升机,它的平飞速度为每小时250公里。其中E型是世界最重的武装直升机。1957年美国将S—58改装喷气发动机,变成了第二代的S—61,最大平飞速度可达每小时267公里。此外,第二代直升机在载重、飞行高度和飞行距离上也较第一代有所提高。如米—4的最大戴重为1740千克,最大航程为400公里,而米—6最大载重为1.2万千克,航程600多公里。S—58起飞重量只有5900千克,升限为2900米高,而S—61起飞重量为90635千克,限为3385米高。法国1962年首次试飞的SA—321“超黄蜂”,也是第二代直升机的代表机型,它最大起飞重量为1.3万千克,升限4000米,航程800公里,一次可飞4小时。
  第三代直升机的主要改进是旋翼采用玻璃纤维材料,它的寿命更长,可达360O小时,速度可达每小时300公里。投产使用时间大约在1966年至1975年。代表机型有德国1967年试飞的BO-105,它的旋翼桨叶用玻璃钢制作,具有很大的挠性,在试验时,经受住了比它正常载重大10倍的疲劳性能,而完好无缺。它超载总重可达2300公斤,速度为每小时250公里,升限为4100米,航程为1000公里,一次可飞5小时45分钟。英国和法国于1971年合作生产的“山猫”,桨叶叶尖是成型玻璃钢,桨叶则由玻璃钢做蒙皮、不锈钢为梁、蜂窝结构为芯。它最大起飞重量为4万多千克,最大速度为每小时333公里,升限为3650米,最大航程为788公里。
  1976年以后,直升机发展到第四代,它换代的标志是旋翼材料改用复合材料,寿命更高,速度可达每小时350公里。代表机型有美国生产的S—70A。它的尾桨十字梁用的就是碳纤维复合材料,它不必用任何铰链,挠性好,寿命极高。美国1976年以后,将BO-150型机的桨叶改用复合材料等,变成了一种轻型运输直升机YUH—61A,它在70年代后期成为美国陆军的新机种。
  除了发动机和旋翼材料的改进外,新一代的直升机在重量和个体大小上,则向两极发展。向大型发展的,可以装载更重、更大的东西,如前苏联1981年展出的米—26,能载20吨重物,客运可载100人,是目前世界最大、最重、翼桨叶最多(8片)的单旋翼直升机。向小型发展的,如目前正在研究的“空中摩托”小型单人直升机,总重量才有100千克,能飞3000米高。还有一种“旋翼”式微型直升机,一个人乘上它,可以向上下、左右、前后飞行,或停悬在空中。此外,总重在10吨左右的中型军用机,因为它兼具重型机的载重大、轻型机灵巧的优点,所以发展很快。
  早期的直升机在军事上大多用在抢救、空降等方面。60年代初,法国首次用直升机攻击地面目标。美国在越南战争中还进一步研究出一种专门用机枪攻击地面目标的AH—1G武装直升机,后来发展到用空地对导弹攻击地面目标的AH—1Q。最近,美国还生产了一种装有最先进武器的新型直升机AH—64,它号称是世界上最昂贵的武装直升机。
  据最新报道,法国和德国也将合作研制一种“虎”式新型战斗直升机,它的作战能力将优于目前任何一种军用直升机。
  飞天乳母机
  飞机在空中飞,不可能装太多的油,这样就影响航程;多装油,又影响有效载重。如果到地面加油,不但麻烦,而且会延误战机。于是,飞行家萌生了在空中加油的想法,就是用一种装满油的飞机,飞到空中去,对另一架飞行中的飞机加油。
  飞机首次空中加油成功的事例,发生在1922年9月。美国一架DH—4飞机对另一架DH—4飞机加油成功。加油时,共飞行了21小时19分钟,飞了3430公里距离。这次加油成功,表明飞机进行加油是可行的,于是专用的加油机就出现了。
  早在40年代中期,英国就研制出了一种用软管加油的飞机。开始是用轰炸机改装而成,它伸出一根软管,然后接到另一架飞机油箱中。加油机飞到被加油机上方,油通过软管加到飞机中。但当时的飞机是螺旋桨式,软管经常缠绕在桨叶上,影响加油,后来即使改用长线引出软管等办法,也不很理想。
  第二次世界大战中和战后,尤其喷气机出现后,由于飞机耗油多,对加油要求就更为迫切,于是出现了一些先进的加油机。对加油机采用漏斗式出油管,接到被加油机受油管上,这样就安全可靠了。
  美国、前苏联和英国等,都生产了先进的加油机。美国有KC—135、KC—10A,前苏联有图—16、米亚—4,英国有“胜利者”等。
  KC—135原是美国1954年生产的运输机,后来改造成“同温层油船”加油机。这是一种涡扇喷气飞机,最大起飞重量 13万多千克,一次可以供油10万多公升。B—52轰炸机用它加两次油,就可以环球飞行一周。
  KC—10A是美国在DC—10—30F客机基础上研制而成的。DC—10—30F是美国1971年开始试飞的一种宽机身客机,最大起飞重量高达25万多千克,改造成加油机KC—10A后,最大供油量可达90吨。它供油速度也快,每分钟达5683公升。
  英国“胜利者”原是一种轰炸机,1952年试飞,最大起飞重量85吨,改成加油机后,可载油45吨。
  前苏联的图—16原来也是一种轰炸机,1955年交付使用。它的最大起飞重量为7万多千克;米亚—4原是一种重型轰炸机,1957年开始服役。它的最大起飞重量为16万多千克。
  空中加油机主要用于军用飞机上,因为客机携带的油足够越洋飞行,所以目前旅客机都不用空中加油。由于战争的需要,各国对加油机都十分重视,单美国就有500架以上的加油机。从1964年6月至1978年8月,美国共出动20万架次空中加油机,空中加油达90亿磅。1982年,英国和阿根廷之间的马岛战争爆发后,由于英国远离马岛,所以就采用空中加油机,对“鹞”式战斗机进行空中加油,使它一天能连续飞行1.2万公里,及时赶到目的地。而这些飞机用船装运到目的地的话,起码要一个多月的时间。这次战争使英国加深了对空中加油机重要性的认识,于是准备扩建空中加油部队。有的军事家甚至认为,空中加油是提高飞机作战效能的一个关键。
  捣蛋专家机
  隐身飞机是一种欺骗雷达,使雷达看不见的飞机。还有一种飞机也是专门欺骗雷达的,但是它的作用正好与隐身机相反。它故意制造“电子”假象,暴露在对方雷达面前,使雷达被它的“迷魂阵”弄得神魂颠倒,以为真的有飞机来,就发出攻击,结果使打击落空。这种施“迷魂阵”的飞机就是电子飞机,也叫电子对抗机。
  电于飞机是现代电子战的主力之一,它是从60年代开始广泛用在各国空军部队的,例如在前苏联前线航空兵中,电子对抗机占作战飞机总数的1/9;而在轰炸机部队中,电子对抗机占的比例还要大,约占1/7左右。
  目前的电子对抗机大多都是用其他飞机改装而成的。美国有EA—6B、F—105G、F—16B、EF—111A等干扰机。前苏联有图—16H和用雅克—28改进的干扰机等。目前,我国也在研制电子对抗机。干扰的手段有两种:一种是消极的干扰,就是从飞机上撒下一些金属铝箔条。这些箔条只有几微米至几十微米厚,几毫米至几十毫米宽,一米至几米长。撒下后,铺盖成很大的面积。对方雷达的电波被箔条反射后,造成有大批飞机的假象。这些箔条在空中能停留一个多小时,等敌机出来攻击,撒箔条的飞机早跑掉了。近来研究制出一种玻璃纤维和尼龙丝箔条,停留时间更长,达几个小时,造成的假象保留时间更长了。另一种是积极的干扰,就是从电子干扰机上发出强烈的干扰信号,或假的信号,使敌方雷达被假信号欺骗而上当。
  EA—6B是美国1971年1月开始装备美国海军的专用电子对抗机。它是在美国A—6攻击机基础上改进而成的,它加长了机身,垂直尾翼上还加装了一个大型天线罩,两翼框架前端各有一个干扰天线,垂直尾翼两端、机翼两端、机尾也都装有天线。机上装有千扰系统、欺骗干扰系统、通讯干扰系统、干扰物投放器等,使它的干扰效率很高,它至今仍在部队发挥作用。F—105G是在F—105战斗轰炸机基础上改进而成的。 F—16B是在F—16的基础上改进而成的。 EF—111A是70年代后期生产的先进干扰机,它的最高速度可达声速的2.2倍,航程达4000公里。它上面装备的电子设备重达3吨,这能及时鉴别敌方雷达信号特性,以便采用灵活的干扰方案。它上面除飞行员外,还专门配备了一名负责电子对抗的电子军官,是目前美军电子干扰的主力。
  前苏联图—16H是1952年试飞的轰炸机,雅克—28是超音速轰炸截击机,1957年试飞。它们改装电子对抗机后,先后在前苏军中服役。有消息说,前苏联还准备将先进的米格—23和苏—24战斗机改装成电子对抗机。
  早在第二次世界大战的末期,英美联军就在多佛尔海峡对希特勒使用过电子干扰。1944年,干扰机撒下的箔条,使德国雷达误认为大批飞机攻来,以致使希特勒上当,将部队调往多佛尔,而盟军却出其不意地在法国诺曼底半岛登陆。
  在第三次中东战争中,以色列飞机对埃及雷达施放假信号,埃及导弹得到假的指令,结果导弹全部打空,未中目标。
  无人机
  无人驾驶飞机是机上没有驾驶人员的飞机。最早的无人驾驶飞机是通过无线电从地面遥控的,后来发展到在飞机上装有预先安排好程序的电脑,在电脑控制下,飞机会按程序自动导航。
  早在本世纪初,就有人提出利用无线电控制飞机是可能的。接着就出现了无线电遥控的飞机模型。30年代,美国、英国和前苏联等国就造出较先进的无线电遥控飞机,并将这种飞机改装成靶机如美国的OQ—19、PQ—8、英国的“蜂后”和前苏联的ПO—2。
  靶机就是供打靶的飞机。最早的打靶,是把模型飞机挂在线上,用两根支柱拉在空中,然后用线拉动模型,供打靶用。后来发展到在飞机尾部拖一个长长的口袋或旗子,这口袋和旗子就当靶子使,叫拖靶。这些靶子既不真实,也不安全。而靶机则可以模拟真实的飞机,训练效果较好。
  在第二次世界大战期间,美国还研究过无人驾驶的轰炸机。当时是用轰炸机改造而成的,如在B—17、B—24轰炸机上安装自动控制系统,变成遥控式无人轰炸机。它先由驾驶员操纵一段时间,当进入攻击目标前,驾驶员跳伞离开飞机。以后,从另一架飞机上遥控它飞向目标,执行轰炸任务。可以看出,这种无人飞机并不全自动,使用起来还有一定局限。
  50年代以后,无人驾驶飞机有了较大的发展。在这之前,无人驾驶飞机大都是用有人驾驶的飞机改造而成的,而这时已经有了专门设计的无人驾驶的靶机了。而且,成功地制造出了无人驾驶的无人侦察机和研究机。这时,无人驾驶飞机的动力也由活塞式发动机,改为喷气式发动机了。
  70年代以来,由于电子仪器的微型化,使无人驾驶飞机发展进入了一个新时期。这时不只遥控式无人驾驶飞机性能更先进,而且有了程序控制的全自动式无人驾驶飞机、电视遥控的无人驾驶飞机和无人驾驶的电子对抗机。
  如美国近年使用的高速遥控无人驾驶飞机“火烽”,就是性能较好、在世界上生产量最多的无人驾驶飞机。它早在 1951年就开始进行滑翔飞行试验,接着又在新墨西哥州进行了动力飞行。这种飞机分两种型号,一种为空军型Q—2A,另一种为海军型KDA。以后逐步改型,如改型后的“火烽”Ⅰ型BQM—34A,可以作为靶机,由飞机牵引升空;改造后的“火烽”Ⅱ型BQM—34F可以作无人驾驶侦察机,由地面发射架发射到空中或由空中母机投放到空中。后来,还改造成了能用数字控制的全自动的无人驾驶机。
  美国曾多次使用“火烽”AQM—34R和AQM—34Q无人电子侦察机,对东南亚和欧洲进行侦察。前苏联也曾经在中越边境多次使用图—95无人电子侦察机进行侦察活动。美国1958年开始研制BMA—72无人电子对抗机。这种飞机实际是一种假目标,从雷达上看,它和B—52相似,是一种冒牌货。最近,无人驾驶作战机也投入了使用。如美国的BGM—34A无人攻击机可以自动发射导弹。此外,美国还生产出了QH—50C无人驾驶直升机,可以对潜艇发射鱼雷。
  两栖雄鹰机
  19世纪末、20世纪初正是航空历史上重要的一页,在这个时期,人类终于实现了飞上蓝天,展翅遨游的梦想。然而,飞机都是从陆地上起飞的,它有没有可能从水上起飞呢?有一个法国人亨利·法布尔却想到了这一点。
  法布尔于1882年出生在法国的马赛市,这是一个濒临地中海风景优美的城市。小小年纪的法布尔就在他父亲的陪同下去看水上行驶着的各种各样的轮船,他父亲可是个造船能手哟!
  “爸爸,船为什么会在水上跑呀?”小法布尔稚声稚气地问他父亲,他的小脑袋里藏着许许多多的为什么。
  “噢,那是因为船上有螺旋桨,它推动着水,才使船向前跑的。”父亲用手指着远处的船,打着手势回答道。
  “那么,爸爸,船为什么不会在天空中飞呀?”小法布尔指着天空,歪着头又问道。
  “傻孩子,天空中飞的那叫飞机,轮船是不会飞到天上去的。”父亲爱抚着法布尔的头,朗朗大笑道。
  “爸爸,我长大了造一艘能飞到天上去的船好吗?”
  “好呀,那当然好。到那时,我和你一起坐在里面。”
  父子俩的这一段对话,深深地印在了法布尔幼小的脑海里。长大以后,他果然没有忘记自己从小就萌发的志向,开始钻研起了造船的学问。开始,法布尔学的是工程学,后来转向了流体力学,这是一门专门和水打交道的学问,研究水流的种种奥秘。
  1905年,23岁的法布尔从流体力学又转向了空气动力学。在研究空气动力学的过程中,法布尔又回想起小时候和父亲在地中海边的那一段对话。
  “对呀,我为什么不用现在学到的知识来实现小时候的幻想呢?”于是,造一架水上飞机的计划摆上了法布尔的工作日程。
  光阴似箭,一晃4年过去了。1909年,法布尔利用研究空气动力学获得的知识,果然制造了一架飞机,这架与众不同的飞机,它身子下面装有3个浮筒,装有3台连接一副螺旋桨的发动机。然而,遗憾的是,这架水上飞机没有能够飞起来。
  虽然,法布尔设计制造的第一架飞机并没有取得成功,但是,他并没有泄气,他仍然一如既往地忙碌着、工作着。
  一方面,他抓紧时间查出这次的失败原因;另一方面,他又在着手准备再造一架新的水上飞机了。就在这一年的下半年,一架新设计的水上飞机制成了。
  这第二架水上飞机的结构非常有趣:机身前面有一个浮筒,另外两个浮筒装在单翼机的机翼下面,机翼安装在飞机的后面;飞行员的座椅安装在纵梁上,而纵梁则将机翼和升降舵连接在一起;还有一台36千瓦的气缸旋转式发动机装在后面,驱动一副推进式螺旋桨。可以这么说,只有船舶制造世家出身的法布尔,才会有这样大胆的设想。这架飞机整个构架都是用木头制造的,浮筒是用胶合板制成的,弹性较好,它们能抵抗水上滑行时产生的撞击及降落时的震动。
  1910年3月28日,一清早,法布尔就穿着整洁的衣服来到到了靠近马赛的一个码头,初升的太阳照着水面和码头,也照在法布尔和这架水上飞机身上,一切都显得那么清新、宁静。
  码头附近陆陆续续走来了一些围观者,他们中有法布尔的朋友、老师和亲属。
  朋友们真诚预祝法布尔旗开得胜,马到成功。
  此刻,水面上波光闪烁,风平浪静,正是试飞的好时候。法布尔坐进飞机,开启了发动机,一会儿,这架飞机便以每小时55千米的速度在水面上滑行起来,飞机滑行过的水面泛起阵阵白浪,然而,飞机却没能飞起来。
  法布尔停下以后,检查了一下,认为并没有什么问题,决定第二次试飞。
  飞起来了!飞起来了!第二次,法布尔驾驶的这架水上飞机飞离了水面,以每小时60千米的速度沿直线飞行了大约500米的距离,后来,随着发动机的关闭而安全地降落在水面上。
  这天下午,法布尔邀请了一些政府官员前来观看他的飞行表演,一切都顺顺当当,漂漂亮亮。官员们都为法布尔的成功感到十分自豪,因为这第一架水上飞机就出现在法国的马赛市,作为马赛的官员当然引以为豪。
  这一天,法布尔总共飞行了4次,其中一次,还进行了小坡度转弯飞行呢!
  第二天,法布尔又继续驾驶着这架飞机,飞行了6千米的路程。
  为了参加1911年3月在摩纳哥举办的一次规模盛大的船舶展览会,法布尔特地对这架水上飞机进行了改装,使它更鲜亮更美丽了,同时,他还邀请了一位经验丰富的飞行员作飞行表演。
  前来参观展览会的人都被这架奇特的飞机吸引住了,人们驻足不前,不时小声议论着。
  在展览会期间,水上飞机为参观者作了现场表演。第一次飞行非常成功,飞行员轻捷地从水面上起飞,在空中飞行了好长一段时间,又安全地降落下来,人们不禁热烈鼓掌,这对法布尔来说,真是最大的安慰了。
  然而,意料不到的事发生了。在第二次飞行表演时,这位飞行员犯了一个严重的错误——他着陆时太靠近海岸了,结果,飞机掉进了拍岸的浪涛里,受到了严重的损坏。
  这对法布尔来说打击太大了。从此他只得结束了这方面的工作,因为他已没有钱再投资造水上飞机了,然而,法布尔并没有因此从航空领域中销声匿迹,他开始集中精力为别的飞机去设计和制造浮筒了。
  法布尔虽然没有给后来的航空发展作出更多的贡献,但是,他首创的水上飞机,却已使他名垂青史了。
  格斗骑士机
  1981年,利比亚和美国在地中海上空发生的空战,是一场很典型的空中格斗。那年8月19日,利比亚空军的苏—22双机和正在利比亚北海岸锡德拉湾进行军事演习的美国海军F—14双机相遇,激战1分钟。空战中,利比亚1号机先发射AA—2“环礁”式红外制导空空导弹,未中,美国F-141号机摆脱来袭导弹后转向利比亚2号机,发射一枚“响尾蛇”导弹将其击落。扑了空的利比亚1号机企图再次转弯攻击美2号机,但美2号机以更小的转弯半径急转到其尾后咬住不放,并发射导弹击中利比亚1号机尾喷管,利机当即凌空爆炸。这次格斗战,双方都使用了空对空导弹,1分钟的较量,美国F-14以2∶0取胜。
  空战(或称空中格斗)用的战斗机,也称歼击机,早年称驱逐机,用于在空中消灭敌机和其他飞航式空袭兵器。二次大战后一段时间,有些国家还研制了要地防空专用的截击机,对付敌轰炸机。但60年代以后,由于雷达、电子设备和武器系统的完善,截击机的任务已由战斗机完成,截击便不再发展。
  战斗机的主要任务是与敌方战斗机进行空战,夺取空中优势;其次是拦截敌方轰炸机、战斗轰炸机、攻击机和巡航导弹;战斗机也具有一定的对地攻击能力。
  第一次世界大战时期,法国首先在飞机上安装机枪用于空战,随后出现了专门设计的战斗机。至第二次世界大战前夕,战斗机已由双翼木布结构过渡到单翼全金属结构,起落架由固定式发展成为可收放式,飞行阻力大大减小。二次大战中后期,世界著名的战斗机有美国P-51“野马”;英国“喷火”“飓风”;前苏联的拉-7;德国的Me-109, Fw-190以及日本的“零式”等。它们都使用活塞发动机,有的速度达到750公里/小时,接近活塞发动机飞机的速度极限,升限达到12000米左右。二次大战将近结束时,德国和英国率先使用喷气式战斗机,但因为数量少、性能差,对战争的进程没有产生重大的影响,喷气式战斗机的普及是战后的事。战后战斗机领域的另一重大创新是完成了向超音速的过渡。
  音速就是每秒飞行340米的速度。1945年英国人试验了一种高速飞机,当速度接近音速时,机身破裂,机毁人亡,于是有人说“音速——像是面前的一堵障碍墙”。后来便出现了“音障”这个词儿。
  为了突破音障,美国兰利研究中心做了大量的试验,并研制了一架叫XS-1的研究机试飞。这架飞机外形像个炮弹,第一次试飞时,是把它装进B-29轰炸机的弹舱中空投后起飞的。那是1947年10月14日,年仅24岁的查尔斯·耶格尔上尉坐进XS-1的座舱里驾驶了这个“炮弹”。当B-29爬高到7600多米高空投下XS-1后,耶格尔立刻起动发动机把飞机拉高,向上爬升,直爬到11580米时,才改平飞,然后关掉发动机开始俯冲。当速度达到马赫数0.8时,飞机强烈振动,马赫数越大,振动就越加剧,0.97,0.98……突然,飞机停止了强烈振动,后来XS-1的速度达到了马赫数1.04——超过了音速!从此,人类的飞行不再受“音障”的限制了。此后到1955年10月,美国北美公司F-100在水平飞行中实现超音速飞行,中间又经过8年。
  战斗机的特点是机动性好、速度快、火力强。从50年代战斗机实现超音速以来,它的发展先后经历了四代。
  以F-15为代表的第三代战斗机是60年代末开始研制的,吸取了朝鲜、越南等局部战争的经验,强调空中机动性。70年代开始大批装备部队,目前仍是很多国家的主要装备。这一代战斗机,高空最大速度可达3000公里/小时,超低空允许最大速度1500公里/小时,升限达21 000米左右,最大航程
  (不带副油箱)2000公里,低空作战半径大于800公里。机动能力是现代战斗机的重要性能之一,从速度马赫数0.9增速到马赫数2.0约需2.5分钟,从海平面高度上升到10000米需1.5分钟。为适应现代空战特点,有的战斗机的瞬时转弯角速度能达到30度/秒。这些战斗机的武器多是兼有中、远程拦射导弹,近距格斗导弹和航空机炮。有些导弹兼有红外和雷达两种制导方式,同时挂在一架战斗机上可以适应不同作战对象和战场环境,大大提高了摧毁目标的概率。中、远程导弹,有的射程达100公里,向上发射可以攻击高度差10~12公里的目标,向下发射不受地面杂波干扰,机载火力控制系统能控制多枚空空导弹同时攻击4~6个目标。有些战斗机可挂数吨炸弹或各种空对地导弹,具有很强的对地攻击能力,总的作战能力大于以前的轻型轰炸机。
  80年代开始,美国、前苏联、欧洲一些国家开始研制第四代战斗机,将于21世纪初开始投人使用。一般讲,第四代战斗机具有下列先进性能:良好的隐身性能、超音速巡航飞行能力、高机动性和敏捷性、短距起落能力。
  目前号称第四代战斗机中,美国F-22最具代表性。它的隐身特征,除适度仿效已经研制成功的F-117A战斗机采用特殊气动布局外,更多地得益于广泛使用复合材料,还破天荒地将外挂武器全部藏在机体内,大大缩小了雷达反射截面积。据称,F-22雷达反射截面积仅0.08平方米,是F-15的1/75。超音速巡航能力来自两台推力大、重量轻、油耗低的F-119变循环涡轮风扇发动机,推重比达到10。由于推力大,不需使用加力燃烧,就可进行超音速飞行,并能以1.5倍音速飞行30分钟,再借助先进的火控设备,为先发现、先发射、速战速决创造了条件。F-22的发动机采用与飞行控制系统交联的可转向二元尾喷管,有效地改善了飞机的垂直机动性,喷口内的反推力装置还大大改善了着陆性能,使飞机可以在500米以内着陆。
  俄罗斯的米格—37是为了对付美国F-22研制的,据称气动布局与F-22相似,采用双垂尾和翼身融合方案,对隐身性能和飞行性能进行了最佳折中和协调。广泛使用复合材料和雷达吸波材料,使飞机具有雷达、红外和目视低可见度特征。由于采用了新的气动设计技术和新型发动机,将具有超音速巡航能力。该机还将装推力矢量喷管,以提高其机动性能,机内装有多种空空导弹和新型相控阵火控雷达。鉴于俄罗斯目前经济形势十分困难,试飞日期一再推迟。
  其他几种新研制的第四代战斗机,如 EF2000欧洲战斗机、法国“阵风”战斗机、瑞典JAS39等,比第三代战斗机性能有较大改善,但还不具有隐身、超音速巡航等关键性能,因此严格地说够不上第四代,有人称它们是“三代半”或“准第四代”战斗机。
  在当前战斗机发展中,还有一个值得重视的趋势,即以较少的投入,利用迅速发展的机载电子系统和武器装备,对现役中的战斗机进行改进,使其延长服役寿命和提高作战效能。例如美国海军用7年半时间、耗资31亿美元对F/A—18改型,使飞机的尺寸加大25%,航程增加,续航时间加长,武器和燃油载荷大大增加,生存力改善。计划到2015年共采购1000架,成为21世纪的主力战斗机。俄罗斯正在苏-27的基础上研制苏-35,主要改进是加装全动鸭式前翼、更新发动机和机载电子设备、提高武器挂载能力。据称,其机载雷达对空目标的探测能力可达400公里,能同时跟踪15个目标,并能制导空空导弹同时攻击6个目标。此外,苏-35还有迄今各战斗机都没有的“越肩发射”能力,即依靠雷达和火控系统制导导弹攻击机后目标,这将对未来空战产生重大影响。
  我国航空工业从50年代中期起已经研制多种歼击机,包括1956年7月试飞成功的歼-5、1958年首次试飞的歼-6单座双发超音速歼击机、1966年1月试飞的歼-7单座单发轻型超音速歼击机和1969年7月首次试飞的歼-8Ⅱ型,1995年10月在北京航空博览会期间,又首次披露了最新改型机歼-8ⅡM歼击机,歼-8ⅡM配装了先进的脉冲多普勒“甲虫”-8Ⅱ雷达,具有上视和下视能力,能携带和制导中程拦射空对空导弹和发射后不管导弹,可执行多种作战任务,包括防空作战、对地攻击、空中遮断、战场支援、护航作战、空中监视等。
  空中间谍机
  1973年10月,以色列从美国买去的先进战斗机,一下子被阿拉伯国家从前苏联得到的地对空导弹打下了40架。为什么打得这么准呢?据说是前苏联的先进雷达运到了阿拉伯,这种雷达把美国的战斗机“看”得清清楚楚,当然就百发百中了,有了这次教训,美国决心生产出一种雷达“看不见”的飞机来,这种飞机就是隐身飞机。
  飞机飞得快,靠肉眼看是不行的,得用雷达来观察。雷达发射电波,电波从飞机上反射回来。雷达接收到了反射波,就会把飞机的“原形”在屏幕上显示出来。因此,要使飞机隐身,就得想办法使电波反射不回去。
  一种办法是改进飞机的外形,使它表面非常平滑,机身机翼融为一体,这样电波就不易反射了。早在50年前,曾出现过一种飞机,这种飞行器只有机翼。如1943年前,美国制造过世界上最大的飞翼XB—35。1946年又研制出了喷气式飞翼Y8-49。它们都是战斗机。这种飞行器表面很平滑,所以有人认为隐身机应该具有这样的外形。
  还有其他办法,如在机体表面涂一层能吸收电波的材料或用非金属材料来制造机体等等。
  隐身方法并不保密,但制造起来很复杂,所以各国都在秘密地研制。1978年,美国就开始在侦察机上使用隐身术。1980年,美国一架侦察机在法国上空要求加油。但它在空中时,雷达未发现它,只好请它降到地面来加油。到地面后,人们才发现这是一架具有一定隐身性能的飞机,这架飞机就是大名鼎鼎的“黑鸟”SR—71。
  接着,美国又在轰炸机上采用隐身术。1978年试飞的B—1轰炸机,它的变后掠机翼和机身融合在一起,具有较好的隐身性能。这也是它与过去生产的B—52轰炸机很不相同的地方。据资料介绍,B—1反射电波后得到的雷达图像清晰度只有B—52的二十分之一。紧接着,美国又对这种飞机采取了更进一步的隐形,从而设计了一种改型机B—1B。据说,B—1B反射电波后得到的雷达图像清晰度只有B—52的百分之一。后来,美国诺斯罗普公司又制造了一种B—2隐身轰炸机。1988年11月28日,这架飞机公开亮相,它的外形很像一只飞翼,机身长仅20.8米,而机翼展开宽达51.6米,可在接近声速的情况下飞行。它的隐形性能比B—1B更好。但由于前苏联解体,美国削减军费,1992年1月28日,布什总统宣布停止生产B—2机。
  美国1988年11月10日,在B—2亮相前,还证实它生产了一种隐身战斗机F—117A。它是由德公司生产的。它的外形呈多角锥体形,可使雷达反射的回波减少到最低。此外,美国还研制了YF—22A和YF—223A隐身战斗机、C—17隐身运输机、A—12隐身轰炸机和隐身直升机。
  前苏联、日本、英国、前联邦德国和以色列等国家也早就开始了隐身飞机的研究。前联邦德国曾提出过隐身攻击机的方案。前苏联的隐身飞机也进入定型阶段。隐身飞机的秘密正在被揭开。
  首席指挥机
  有一种飞机,它的机身上部装有一个圆盘似的东西,就好像长了一个蘑菇。这是什么飞机?圆盘上装的又是什么东西?原来这是一种预警机,圆盘里装的是雷达天线。
  预警机实际上是一种更高明的侦察机,它侦察的工具不是光学设备或声纳装置,而是雷达。预警机更高明的地方是,它有“预先警戒”的作用,也就是说,当敌机刚刚出现在雷达的“视线”上时,不等敌机飞到身边,就能提早发现。它不光能侦察敌机,而且机上的电子设备会把侦察来的情况加以分析,并发出指挥信号,指挥自己的战斗机去打击敌机。
  预警机是在第二次世界大战后才出现的,大约有四五十年的历史。早在1945年,美国海军就在一架鱼雷轰炸机上装了一部雷达,变成一架有一定预警作用的TBM—3W观察机。后来又在一架AF—2W飞机上,装了一部更好的雷达,探测能力更强了。接着又对“空中袭击者”号飞机进行改装,除了机内装有雷达外,而且把天线伸到机身下面的外边,这就是预警机的雏型。
  50年代中期,美国在一架大型反潜飞机机身上方,安装了一个天线,变成了E—1B机,这就是最早的预警机。50年代末期,美国的预警机开始成熟,研制成E—2系列预警机。这种飞机仅机身上方安装了天线,而且天线可以在360度范围内旋转,以搜寻四面八方的目标。同时,机身内还装了复杂的电子设备,设备重达5吨。后来,这种预警机又进行了多次改进,改进而成的E—2C可以探测到400公里范围的目标。它可以同时跟踪近300个目标,引导上百架战斗机去攻击目标。
  由于预警机实际上是大型飞机和圆盘结合的产物,所以除美国的E—2是专门设计的以外,其他的预警机大都是用运输机改装而成的。运输机“肚子”大,可以装许多电子设备;运输机飞行时间长,可以进行长时间观察、跟踪。如美国的E—1B就是用C—1运输机改装成的。前苏联在50年代末期,也曾把图—114客机改造成图—126空中预警机。这种飞机在1971年,曾多次指挥印度飞机低空飞入巴基斯坦活动。
  60年代中期,预警机又得到了新的发展,发展的标志是预警和指挥系统有机地结合在一起,性能大大提高。代表机种是美国用波音707客机改装的E—4预警机。它可以测到400公里的范围,可以跟踪600个目标,是目前世界上最先进的预警机。
  目前,还有日本、以色列和英国等国家在研究预警机。英国70年代研制了“猎迷”预警机。英国还对直升机作了改装成预警机的试验。目前美国正在研制更先进的E—4预警机。前苏联也计划把伊尔—76、伊尔—86改装成更先进的预警机。估计,未来的预警机可能将天线移到机内,以减少空气的阻力,这样,它身上就不会再长“蘑菇”了。
  多才多艺轻型机
  现代大型旅客机客舱分上、下两层,宽敞得像影院。但也有向小型化发展的,这就是轻型飞机。它身材小巧,轻得只能容纳几个人,是航空队伍里的“轻骑兵”。
  轻型飞机是从30年代开始发展起来的,50年以后发展更是突飞猛进。它的特点是构造简单、轻巧、造价低、行动方便,其中较大的可以载10人左右,可以从事探矿、救灾和短途运输作业;而较小的,只能载2至4人,一般用来进行比赛、表演和游览。
  轻型飞机一般速度不快,所以大都采用螺旋桨式发动机,机翼也大都采用平直翼。
  美国赛斯纳公司设计了一系列造价便宜的单发动机轻型飞机,如“赛斯纳”150、182、210等,它们都是上单翼,带有滑撬,可在水上起落。而赛斯纳“农用马车”则采用下单翼,可进行喷洒农田等作业。美国“比奇”35,则是一种带V字型尾翼的小型旅行机,可载4—6人,时速为338公里。派帕公司生产的PA—28也是下单翼游览机,时速为237公里,可戴4人。PA—18是上单翼机,只能载1人。PA—38是下单翼教练机,它的尾翼是T字型,可载2人。美国还生产了一种“彼得氏—S—2A”比赛机,在世界比赛中盛行一时。轻型飞机中也有双发动机的。赛斯纳310和洛克韦尔980就是两种这样的轻型机,可载6人左右。美国还生产了一种喷气式轻型机,可以载14人。
  西方轻型机的发展比较快,除美国外,许多国家都热衷于生产轻型机,有的轻型机还是个人生产的,其中如法国的“拉利”,可载4人,时速为275公里;德国的RS—180,也可载4人,时速为235公里;日本的“富士”FA—200,亦可载4人,时速为234公里。以上都采用单发动机。英国的B206则是双发动机,可载8人,时速为415公里。
  60年代以来,许多人自己动手制造小型飞机。在西方,一种“家庭造飞机”活动在一些先进国家普及开来。1986年12月14日,美国伯特设计的一架双机身轻型机“旅行者”准备进行一次史无前例的环球飞行。伯特的哥哥迪克·鲁坦及珍娜·耶格尔2人,乘这架自制的轻型机经过9昼夜的连续飞行,创造了飞行40 407公里的长途飞行世界纪录。
  我国的轻型飞机研制也在发展中。1975年,我国研制的Y—11轻型机首次试飞成功,这是一种上单翼小型多用途机,带有双发动机,可用于农业、林业和地质勘探等作业中。
  70年代以来,又出现了超轻型飞机,而且发展迅速。目前全世界有40多家公司在生产这种飞机,年产量达1.8万架。我国也研制了“蜜蜂”2号和W5、W6“蜻蜓”超轻型飞机。1985年,我国第一架超轻型水上飞机“普蓝”号试飞成功。
  银鹰内功
  飞机机翼
  气球、飞艇等轻于空气的飞行器是靠空气的浮力升空的,那么重于空气的飞行器飞机、直升机等是靠什么上天的呢?它们是靠在空气中运动时产生的升力(也叫空气动力)飞上天空的。
  机翼产生升力的奥秘在于机翼在运动时上下表面气流流速不同,上表面流速快,压力小,下表面流速慢,压力大,这个压力差就使得机翼产生向上的升力。
  具体地说,机翼不是一块平板,而是从前缘到后缘厚度不同的曲面体。如果把机翼平行飞机对称面切一刀,露出的切面就是翼剖面,或者叫翼型。翼型前缘厚、较圆滑,后缘薄、较尖锐。机翼上表面弯度大,而下表面比较平坦。飞机在空气中运动时,气流流过机翼上表面的路程长、压力低,流过下表面的路程短、压力高。由于上下翼表面的压力差而产生的把机翼举起来的力,就是升力。当飞机以某一仰角(指机翼前后缘连线与气流方向的夹角)飞行时,上下机翼表面流速差更大,升力也加大。当机翼产生的升力克服了飞机的重力时,飞机就腾空而起了。
  人类在多年的研究中发现,机翼翼型对升力的大小有很大的关系,因此研究出形状各异的翼型,供不同的飞机选用。
  翼型按使用的速度范围不同,可以分为低速翼型、亚音速翼型、跨音速翼型和超音速翼型。
  足够的升力是保持飞机飞行的必要条件。在高速飞行时,升力一般够用,但在低速,特别是在起飞着陆时,由于速度小而升力不足,有必要采取增加升力的措施,主要是加装各式襟翼。
  襟翼平时像“衣襟”那样附着在机翼的前缘或后缘,只在飞机起飞或着陆时才放下或打开,使机翼面积增大,或者使机翼弯度加大,这样,上翼面会有更大的流速,从而增大机翼的升力,使飞机在较低的速度下能飞离地面或安全着陆,这样就可以大大缩短跑道长度,提高飞机的安全性能。襟翼的种类很多,主要有简单襟翼 (增大机翼弯度),开裂襟翼(增大弯度),后退开缝襟翼 (增大弯度、面积、改善气流),双缝襟翼(增大弯度、面积,改善气流),后退襟翼(增大面积,弯度),前缘襟翼 (增大弯度),前缘开缝襟翼(改善气流,增大面积、弯度),克鲁格襟翼(增大弯度、面积)。
  飞机在空气中飞行,作用于飞行器上的空气动力还有一个平行飞行方向的分力,叫阻力。阻力指向后方,阻碍飞行。要让飞机持续飞行,必须由发动机产生足够的推动力或拉力,用以克服阻力。显然减小阻力对提高飞行速度、节省燃油是有利的。空气动力学和飞机的气动力布局方面的许多重大成就,都是着眼于减小阻力。以机身为例,迎风面积应减到最小,表面应光滑,形状应流线化而没有突角和缝隙,以便尽可能减小阻力。高速飞机机身设计采用“跨音速面积律”,即把机身中部做成蜂腰形,有助于降低阻力和提高速度。
  近年来很多民航机机翼的端部加装了一组直立的小翼面,称为翼梢小翼,这就是一种用来减小飞机机翼诱导阻力的手段。试验表明,机翼的展弦比(机翼翼展与平均弦长之比)越大,诱导阻力越小,但是过大的展弦比会使机翼太重,因而增大机翼展弦比有一定的限度。采用翼梢小翼能起到增大展弦比的作用,使全机诱导阻力减少20%~25%,相当于升阻比提高7%,因此,不少运输机都采用翼梢小翼,作为提高飞行经济性、节省燃油的先进气动力设计措施。
  外形结构
  1908年,当法国财团打算购买莱特飞机的专利,并邀请莱特兄弟做飞行表演时,哥哥威尔伯是“提”着飞机从美国去法国的。他把一架新飞机拆散分装在了几个板条箱里。如今的飞机可就提不走了,它四肢齐备、五脏俱全,结构非常复杂。
  飞机是由机身、机翼和尾翼、起落架、动力装置、操纵系统和各种机载设备等主要部件组成的。
  机身 处于飞机的中心,用于容纳人员、货物和各种设备,连接飞机其他部件。早期飞机只有骨架,没有蒙皮。现代飞机通常是铝合金制成的圆形或椭圆形长筒机身,由框架、桥梁和桁条组成,外面覆以铝合金蒙皮。有一种没有专门机身的飞机,全部人员、货物、燃油等都装在机翼里,称为“飞翼”。
  机翼 是用以产生升力的部件,有的飞机的机翼里面要安装油箱、机炮、起落架和发动机。在机翼后缘外侧一般有副翼,前缘和后缘内侧有各种襟翼,用以增加升力或改变升力的分布。尾翼通常在飞机尾部,分水平和垂直尾翼两部分。水平尾翼一般由固定的水平安定面和活动的升降舵组成;垂直尾翼由固定的垂直安定面和活动的方向舵组成。
  起落架 是飞机起飞、着陆滑跑和在地面停放、滑行中支持飞机的装置,一般由承力支柱、减震器、带刹车的机轮(或滑撬、滑筒)以及收放机构组成。起落装置按构造大体分固定式和收放式两种。根据在飞机上位置的安排又可分为后三点式、前三点式和自行车等几种基本型式。在低速飞机上可以采用不收放的固定式起落架,以减轻重量和结构复杂程度;现代高速飞机多采用可收放的起落架,以减小飞行中的阻力。
  动力装置 包括产生推力或拉力的发动机,以及保证发动机正常工作所需的附件或系统。动力装置分为活塞式和喷气式两大类。
  操纵系统 是传动操纵指令、驱动舵面或其他有关装置的所有部件的总称,用来实现对飞行轨迹、姿态、速度、气动外形等的控制。
  机翼后缘的襟副翼、尾翼的方向舵和升降舵合在一起称为操纵面。飞行员利用手握驾驶杆和脚蹬舵,就可以使飞机改变飞行姿态,上升、下降、转弯,还可以做出翻筋斗、滚翻等复杂的特技动作。驾驶员前推或后拉驾驶杆,可带动升降舵下偏或上偏,使飞机下俯或上仰。向左或右压驾驶杆(或转动驾驶盘)则带动副翼偏转,使飞机向左侧或右侧滚转。脚蹬连着方向舵,驾驶员蹬左脚时方向舵向左偏转,机头向左偏;反之,机头向右偏。
  早期的飞机采用上面讲的由驾驶杆、脚蹬、拉杆、摇臂组成的人工操纵系统,并配有各种助力系统、增稳装置和自动驾驶仪等,以改善飞机的操纵性和稳定性。现代飞机已逐步采用电传操纵系统,即用电子线路取代驾驶杆到助力器之间的机械元件,完全摆脱了机械信号,具有重量轻、精度高、易与火控系统和动力系统交联、便于控制更多的操纵面等优点,明显地改善了飞机的飞行品质。A320、波音757和767等客机首先采用电传操纵系统控制机翼上的缝翼、襟翼、扰流板等活动面,A320客机于1988年成为第一个全面采用电传操纵系统的客机。预计今后会有越来越多的飞机采用电传操纵系统。
  飞机心脏
  发动机为各种飞行器提供动力,所以人们常说:“发动机是飞机的心脏”。
  早期的飞机使用活塞式发动机,但由于活塞式发动机功率和螺旋桨效率满足不了继续增速、突破音障和提高升限的需要,人们开始加紧研制喷气式发动机。
  其实,早在1791年已出现燃气轮机设计方案,20世纪产生了喷气推进理论,但是很长时间内叶轮的效率太低,不可能造出实用的涡轮喷气发动机。英国人弗兰克·惠特尔于1930年1月取得了涡轮发动机专利。而德国帕布尔斯特·冯·奥海因却后来居上,在1937年3月研制成功推力为5千牛的HeS—3B轴流式喷气发动机。1939年8月27日,装此发动机的He—178飞机试飞成功,最大速度为700公里/小时,成为世界上第一架成功飞行的喷气飞机。惠特尔的离心式涡喷气发动机于1937年4月12日试制成功。1941年5月15日装有W—1发动机的E28/39喷气机试飞成功。
  现代飞机大多数使用喷气发动机,那么喷气发动机是怎么回事呢?
  喷气发动机可以分为火箭发动机和空气喷气发动机两大类。前者主要用于火箭、人造卫星和宇宙飞船,后者用于飞机。空气喷气发动机是利用空气中的氧和燃料进行燃烧所得的燃气作为工作介质的动力装置。这种发动机在工作时,空气进入燃烧室之前先行压缩,然后进入燃烧室与雾化了的燃料混合燃烧,成为具有很大能量的高温燃气,以高速从喷口向外喷出,使发动机产生推力。
  空气喷气发动机又按空气压缩方法的不同分为无压缩器式和有压缩器式两种。无压缩器式包括冲压喷气发动机和脉冲喷气发动机。有压缩器的包括涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机和涡轮轴发动机,它们广泛用于各种飞机和直升机。
  涡轮喷气发动机 主要由压气机、燃料混合燃烧室、涡轮及喷管等组成。在这种发动机中,涡轮带动压气机旋转,使进入发动机的空气增压后与燃料混合燃烧,燃气经尾喷管高速排出获得反作用推力。目前使用的有离心式(靠离心力压气)和轴流式(气流方向基本上与前后轴线相平行)涡轮喷气发动机。为了在短时间内增加发动机的最大推力,有的发动机在涡轮后面装有加力燃烧管,进行喷油复燃,通常可增加最大推力30%~70%。涡轮喷气发动机广泛用作军用飞机的动力装置。
  涡轮风扇发动机又称内外涵发动机,它在普通的涡轮喷气发动机的基础上加装了由涡轮带动的风扇和一个外涵道。这种发动工作的特点是:空气分两路进入发动机,一路通过内涵道(核心发动机),另一路进入外涵道,两路气流通过各自的喷管或在混合室内掺混后通过共同喷管排出,产生推力。与涡轮喷气发动机相比,涡轮风扇发动机具有更大的空气流量和较低的喷管喷射速度,因而推进效率及经济性等都显著提高。外涵道与内涵道空气质量流量的比值叫涵道比。通常小涵道比涡扇发动机主要用于战斗机、战斗轰炸机和攻击机;大涵道比涡扇发动机用于客机和运输机。
  涡轮螺旋桨发动机 简称涡桨发动机,是用燃气涡轮带动螺旋桨的涡轮喷气发动机,也是一种混合推进的动力装置。总推力由螺桨产生的拉力(或推力)和喷气产生的反作用推力组合而成,其中喷气产生的推力仅占总推力的一小部分。涡轮螺桨发动机的性能主要由螺旋桨的特性来确定,而螺桨的效率随着飞行速度的增加而降低。因而涡桨发动机最适合中等飞行速度
  (400~800公里/小时)的飞机使用。涡桨发动机耗油率低、功率大、构造简单、重量轻、阻力小。涡桨发动机还有一个优点,即起飞的拉力性能好,着陆时螺桨可以反桨,产生反向拉力,缩短着陆滑跑距离。
  涡轮轴发动机 是燃气通过涡轮驱动转轴输出轴功率的涡轮喷气发动机,是直升机采用的主要动力装置形式。工作原理和结构与涡轮螺旋桨发动机基本相同,只是核心机出口燃气所含的可用能量几乎全部供给动力涡轮,通过传动轴带动直升机螺旋桨旋转或带动其他负荷。涡轮轴发动机经涡轮螺桨发动机操纵灵活、启动容易、加速性好,但结构比较复杂。
  未来各类飞机的性能进一步提高,有赖于发动机技术的继续创新,主要表现在:
  (1)提高推重比。目前先进发动机的推重比大约在10~12之间。进一步提高推重比,需要改进设计,研究先进的气动技术和采用新的材料。如:采用三元后掠激波压气机叶片、短环形高温分段陶瓷燃烧室,提高转子的转速,增大风扇和压气机各级的负载,在发动机热端部件、结构件和轴上应用复合材料等。在上述高技术的基础上,可望设计出推重比高达20~24的先进航空发动机。
  (2)降低涵道比,提高总增压比。为适应经济性的要求,民航机使用的发动机的涵道比越来越大。为持续进行超音速飞行,战斗机的发动机则采用降低函道比、提高总增压比的措施,来加大喷气速度。其关键技术是在压气机设计中采用高性能的气动叶片和结构。
  (3)提高涡轮进口温度。为了使发动机的推重比达到或超过20,发动机的结构将从以全金属为主向着以非金属为主转换。除了要提高冷却技术外,还要进一步减少热端部件的封严间隙,采用主动间隙控制技术,并把单晶叶片加上隔热涂层,来提高涡轮叶片的高温性能。
  (4)采用矩形截面的二元推力转向喷管。在先进发动机上,都设计有二元推力转向喷管,着陆时用于推力反向,缩短飞机着陆时的滑跑距离,还可以提高飞机的飞行机动和隐身能力。
  (5)采用数字式电子控制系统。数字式电子控制技术取代了传统的液压机械式控制技术,使发动机的结构简化、可靠性提高,并减轻驾驶员的工作负担。
  所有飞机都靠发动机提供动力,而发动机的动力又是靠燃料与空气混合燃烧产生的。因此,飞机离开燃料就寸步难行。飞行发动机用的各种燃料总称航空燃料,通常是可喷射雾化的液体燃料。
  目前的航空燃料主要由石油加工制成,按用途分为活塞式发动机用的航空汽油和喷气式发动用的喷气燃料(亦称航空煤油),此外还有起辅助作用的启动燃料。三种燃料中,喷气燃料消费量最大。
  飞机上贮存燃料的容器叫油箱。油箱一般安装在机身、机翼内部,还有机外 (悬挂)油箱。在飞机上配置燃油时,除考虑耗油量外,还应考虑飞机重心。飞机上各个燃油箱,加上供油、输油、加油、放油、油箱通气、油箱增压及油箱油量指示与控制等分系统,构成完整的燃油系统。
  除上述常规燃料外,人类正在探索用甲烷、液氢、太阳能、核能及微波作为动力源,这将为飞行器带来新的飞跃。例如正在试验中的以微波为能源的飞行器,就是以磁控管或微波发生器从地面聚束微波作为飞机能源的。这种飞机的机翼下面铺了一层很薄的硅整流二极管阵列,用它接收能量,并把能量转换为直流电源,供给电动机,驱动螺旋桨。
  神经中枢
  1928年,全世界的飞行员都是凭着自己的双眼,从空中歪头扭脖目视地面来判断飞机的位置和状态的。一位美国陆军中蔚飞行员却大胆地使用别人刚研制成功的地平仪、陀螺方位仪、高度表等仪器,在1929年9月24日作了世界上第一次“盖罩”飞行,即仅靠仪表不看地面的仪表着陆。这位飞行员就是二次大战中率领美机轰炸日本东京的詹姆斯·杜立德,当年研制成功的一些简陋的航空仪器仪表如今已发展成了配套成龙的机载电子设备。
  现代飞机上装有各种机载电子设备中,它们能自动接收外界的信息,飞速完成十分复杂的计算,然后作出准确的判断,因此这些电子设备被誉为飞机的“神经中枢”。
  以机载火力控制系统为例,它通常由目标探测设备(包括光学观测设备、雷达、红外、激光控测设备和微光电视等)、机载参数测量设备(包括各种传感器、大气数据计算机、无线电高度表和惯性平台等)、火力控制计算机
  (有机电、电子模拟和电子数字等不同类型)、瞄准显示设备(包括光学瞄准具的头部显示器、平视显示器和下视显示设备)和瞄准控制设备 (包括武器型别、攻击方式和系统工作状态的选择部件)等组成。火控系统的工作程序是:目标探测设备发现目标并跟踪目标,将各种机载设备所测得的目标位置及运动参数、载机飞行及状态参数、装备的武器弹道参数同时输入火控计算机,根据所选定的攻击方式进行弹道及火控计算,输出信息给显示器,或输出操纵指令给自动驾驶仪。这一切工作都是在极短的瞬间完成的,飞行员可根据显示器上的控制信息操纵载机(或炮塔传动装置),或由自动驾驶仪自动操纵载机,使武器迅速、准确地进入瞄准状态,及时投射弹药,并将投射后仍需载机制导的弹药导向目标。
  机载电子设备是安装在飞机上为完成飞行和作战任务所需的各种电子设备的总称,主要用于通信、导航、目标探测、电子对抗、座舱显示与控制、信息综合与处理,以及飞机、发动机和武器系统的控制和管理。在现代飞机上,机载电子设备是更新换代最快的部分,在全部飞机成本中所占的比重越来越大,已经成为决定飞机战术技术性能和作战效能的重要因素。
  按照机载电子设备的功能,通常分为:
  通信设备 实现从点到点的信息传输设备,包括不同频段的航空电台、呼救电台、机内有线通信设备、敌我识别器等。
  导航设备 确定飞机位置并引导飞行的设备,包括飞机进场着陆、无线电罗盘等他备式导航设备的机上部分,多普勒、惯性、天文等自备导航设备和各种组合的导航系统。
  目标探测设备 利用物体对电磁波的散射、超声波在水中的传播与反射和光电转换等原理和技术发现目标,并获取目标的信息。目标探测设备包括不同功能和体制的雷达、激光、红外、电视等光电探测装置和声纳等。
  电子对抗设备 是敌对双方利用电磁手段进行侦察反侦察、干扰反干扰、摧毁反摧毁的技术设备,包括电子侦察、威胁警告、有源干扰、无源干扰、反辐射设备等。
  信息综合处理设备 是对信息进行传输、变换、存储、计算所需的各种技术设备中,包括数据总线、任务计算机以及有关软件等。
  座舱显示和控制设备 是将信息以文字、符号、刻度、图形、声光等形式提供给收信者的设备,包括飞机综合电子显示系统、各种航空仪表和信号装置。控制器是飞行员用于管理飞机各系统发出指令的控制部件,握杆操纵控制器、话音指令控制器、多功能综合控制键盘等。
  机载电子设备最初是根据不同的功用,各自独立研制、自成体系、纵向发展的。随着飞机功能的增加,所要求的各种任务设备越来越多,造成传感器、收发机、控制/显示器等大量重复,带来空间紧张、功率和重量增加、可靠性和电磁兼容性问题突出以及飞行员负担过重等弊病。因此,现代机载电子设备正向系统化和综合化方向发展。
  在各种机载电子设备,机载雷达是十分重要的一类。它是装在飞机上利用电磁波对目标进行探测和定位的电子设备,通常被人们称为“飞机千里眼”,在原始条件下由人眼完成的所有工作以及人眼无法胜任的许多工作都能由机载雷达完成,如目标的搜索和跟踪、地形测绘和地图显示、地形回避、地形跟随与防撞、轰炸瞄准、导航、武器制导、敌我识别、搜潜反潜、雷雨区显示与回避等。雷达按工作体制或某些特征可分为:连续波雷达、脉冲雷达、脉冲压缩雷达、脉冲多普勒雷达、相控阵雷达、合成孔径雷达、频率捷变雷达等。机载雷达按用途可分为:截击雷达、轰炸雷达、空中侦察和地形测绘雷达、航行 (气象)雷达、多普勒导航雷达、地形跟随和地形回避雷达以及预警雷达等。
  现代雷达的“视力”比人眼强得多。美国F—14战斗机上的AWG—9火控雷达搜索目的距离可达160公里,可同时跟踪24个目标,并指挥“不死鸟”远程空对空导弹同时攻击80~100公里以外的6个威胁最大的目标。E—3预警机上的预警雷达能探测半径370公里范围内的水上、陆地和空中目标,指挥自己的飞机完成空中格斗、近距支援、截击、遮断、空中加油和空中救援等各种任务。
  随着电子技术的发展和战术要求的不断变化,机载雷达在作用距离、目标分辨与识别能力、抗干扰能力和可靠性、维修性等方面将进一步发展,尤其是增大作用距离,以满足对付“隐身”目标的要求。微电子技术和固态器件的进一步发展,数字处理技术、微处理机的广泛应用,将促使同时搜索、跟踪多个目标和具有同时多功能的机载相控阵雷达获得较为广泛的应用,从而提高雷达控制发射武器和制导各种导弹的能力。机载雷达的小型化、自动化程度和自适应能力也将进一步提高,并向综合化、系统化、软件化发展。
  武器系统
  海湾战争中,多国部队和伊拉克军队的人员比为1∶2.4,火炮数量比为1∶2.4,坦克数量比为1∶1.44,但多国部队的新式飞机和精确制导武器却拥有绝对优势。在对伊拉克长达38天的轰炸中,多国部队出动的各型飞机总投弹量8万多吨,伊拉克平均每天要挨1600多吨炸弹,开战的第一天甚至挨了10 000多吨。空中打击把伊的防线全面打垮,装备技术上的优势大大弥补了多国部队兵力的不足,待到发起地面战斗时,短短100小时,就击溃了号称世界第四的伊拉克陆军,伊拉克政府不得不投降。可以说海湾战争的空战是一次机载武器的大展览。
  机载武器系统由飞机上的武器和弹药、装挂和发射装置以及火力控制系统构成。不同任务的作战飞机,配置不同的武器系统。
  现代战斗机的武器系统以空对空导弹为主,航空机炮为辅,装有航空瞄准具或先进的火力控制系统,其中的机载雷达可远距探测目标及完成对空空导弹的制导任务。能夜间出动的全天候战斗机还装有微光电视、红外探测设备等。
  轰炸机带攻、防两类武器。攻击武器以巡航导弹为主,常规炸弹为辅;防御武器以电子干扰为主,诱惑导弹为辅。用作火力控制系统的是轰炸瞄准器或综合导航轰炸系统。
  战斗轰炸机主要携带对地攻击武器,兼有较强的空战能力。为了完成空地、空空两类任务,一般装有多功能火控雷达,可用于对空作战、对地测距、地形测绘或导航。
  攻击机的武器有航空机炮、空地导弹 (反雷达导弹、反坦克导弹等)、常规炸弹、制导炸弹、地雷、水雷、鱼雷及战术核炸弹,还装有射击轰炸瞄准器或高度自动化的综合导航攻击系统。
  航空机炮 是飞机上的一种自动射击武器,口径一般大于或等于20毫米
  (20毫米以下称航空机枪)。二次大战中及战后一段时间,航空机炮是战斗机的主要武器。空空导弹出现后,有些国家一度忽视航空机炮的发展,在实战中吃了亏。实战证明,在空中近距格斗中,航空机炮仍是不可缺少的武器。
  航空炸弹 是由飞机或其他航空器投掷的无航行动力的爆炸性弹药。从1911~1912年意大利、土耳其战争中意军第一次从飞机上扔炸弹算起,炸弹一直是航空军械的重要组成部分。航空炸弹一般由弹体、装药、弹耳、引信等组成。炸弹靠弹耳挂在飞机上,从飞机上投下后,靠尾翼使炸弹稳定降落,由引信引发炸弹装药爆炸,依靠爆炸时产生的冲击波、弹体碎片和高温等效应来破坏目标或完成其他专门任务。航空炸弹有很多种。按外形大小和重量可分为小型(50千克以下)、中型(100~500千克)、大型炸弹(1000千克以上)。按用途可分为爆炸弹、杀伤弹、杀伤爆破弹、燃烧弹、爆破燃烧弹、穿甲弹、反坦克弹、反潜炸弹、反跑道炸弹、汽油弹、子母弹、化学弹、生物弹和各种核炸弹,此外还有各种辅助用途的照明弹、照明闪光弹、烟幕弹、标志弹、模拟弹和教练弹等。二次大战后,为了提高轰炸效果,各国大力发展具有激光、电视等制导装置的炸弹,俗称“灵巧炸弹”,大大提高了对目标的破坏力。
  以激光制导炸弹为例,前部有激光导引头,其后有控制舱,中部是弹体,尾部有4片很大的弹翼,其作战方式有单机照射投弹式和照射器与投弹飞机分开的协同作战式。炸弹投下后,开始自由下落,当被照射目标散发的激光能量强大到足以形成制导信号时,炸弹开始制导飞行,最后击中目标。1991年海湾战争中投下的第一颗炸弹就是由F—117A隐身飞机投掷的激光制导炸弹。巴格达的95%的目标都是由F—117A激光制导炸弹摧毁的。其中一种叫GBU—27的激光制导炸弹采用钢制弹和延期引信,高空投放,穿入建筑物内部爆炸。
  空对空导弹 是战斗机的空战武器,与航空机炮相比,具有射程远、命中精度高、威力大等优点。空空导弹主要由制导装置、战斗部、引信、动力装置和弹翼等部分组成。制导装置用以控制导弹跟踪目标,常用的有红外寻的、雷达寻的和复合制导等类型。战斗机用它来直接摧毁目标,多装高能常规炸药,也有的用核装药。引信用以引爆战斗部,常用的有红外、无线电和激光等类型的近炸引信,多数导弹还同时有触发引信。动力装置用于产生推力,均采用固体火箭发动机。弹翼用于产生升力,并保证导弹稳定飞行。
  空空导弹接攻击方式分为格斗和拦截两种。格斗导弹以攻击目视距离内的目标为主,又称近距格斗导弹,多采用红外寻的制导,发射后可以不管。导引头的跟踪范围和跟踪角速度大,能实施离轴发射,最小发射距离为300~500米。横向过载30~60g,机动能力强,能对目标实施全向攻击。迎头攻击时,最大发射距离可达18~25公里。拦射导弹,有中距、远距之分,中距拦射导弹的最大发射距离从25公里到100公里不等,多采用半主动雷达寻的制导。远距拦射导弹采用复合制导,可由载机在距目标100公里以外连续发射数枚,攻击不同方向的数个目标。拦射导弹与载机上的脉冲多普勒雷达火力控制系统相配合,具有下视、下射能力,能攻击超低空飞行的飞机和巡航导弹,有的兼有近距格斗能力,可用于全高度、全方向、全天候作战。
  空地对导弹 是从航空器上发射攻击地(水)面目标的导弹,是航空兵进行空中突击的主要武器之一,装备在战略轰炸机、战斗轰炸机、攻击机、武装直升机及反潜巡逻机上。与航空炸弹、航空火箭弹等武器相比,具有较高的摧毁目标的概率,机动性强,隐蔽性好,能从敌防空武器射程以外发射,可减少地面防空火力对载机的威胁;但造价高,使用维修复杂。
  空地导弹与航空器上的探测、跟踪、制导、发射系统,以及保障设备等构成空地导弹武器系统。武器系统的具体组成取决于空地导弹类型、导引方法和发射方式等因素。航空器可从不同高度以亚音速或超音速发射导弹,攻击一个或多个目标。
  空地导弹有多种分类方法。按作战使用分,通常有战略空地导弹和战术空地导弹;按不同用途分,有反舰导弹(空舰导弹)、反雷达导弹、反坦克导弹、反潜导弹及多用途导弹;按飞行轨迹分,有弹道式、飞航式、机载巡航空地导弹。
  战略空地导弹是战略轰炸机远距离突防的一种进攻性武器,主要攻击军事、工业基地,交通枢纽,政治、经济中心和军事指挥中心等重要战略目标。多采用自主式或复合式制导,命中精度高,最大射程可达3000公里,弹重数吨,速度可达3马赫数以上,通常采用核战斗部。
  战术空地导弹主要装备战斗轰炸机、攻击机、武装直升机、反潜巡逻机等机种,用以攻击雷达、桥梁、机场、坦克、车辆及舰船等战术目标。动力装置一般采用固体火箭发动机,制导方式多采用无线电指令,红外、激光或雷达寻的等制导。射程大多在100公里之内,弹重数十至数百千克,通常采用常规战斗部。
  现代飞行
  1903年莱特兄弟成功试飞的第一架有动力的飞机简陋无比,它的主要材料是木材和蒙布,只有少量的钢材作骨架,水平操纵面装在飞机的前面,垂直操纵面在后面,用构架和机翼相连。发动机是自己动手制造的重77千克、12马力(9千瓦)的四缸汽油发动机。那时的飞机一点儿也谈不上安全和舒适。
  现代飞机上除了前面已经提到的设备外,还有一些重要的系统,如:
  电气设备 现代军民用飞机上都有很多用电设备,如照明和信号设备、各种电气仪表、无线电设备、电气加热 (防冰、加温、炊事……)、电动机构、计算机、电子干扰和反干扰设施等。所有上述设备需要的电力都靠飞机的供电设备提供。
  早期的飞机,只有一些简单的用电设备,一般用蓄电池即可满足需要。二次大战期间,飞机上的用电设备逐渐增加,普遍采用低压直流电源系统,其主电源是航空发动机直接带动的直流发电机。后来又研制了更新型的电源。90年代飞机上广泛采用的电源是变速恒频交流和270伏高压直流电系统,以适应现代飞机对用电的高要求。如为了提高安全性而增加余度布局、实现不中断供电、增加发电容量。在所有驱动任务中取消液压和气压系统而代之以全电系统,改善可靠性和维护性。
  航宁仪表 航空仪表是向飞行员提供飞行器及其分系统工作状态信息和指引信息的多种仪表装置的总称。飞机上所有仪表按功用可分为三类:
  飞行导航仪表,又称领航驾驶仪表,用以指示飞行状态和领航参数,如高度表、空速表、马赫数表、升降速度表等。
  发动机仪表,指示动力装置工作状态的仪表,主要包括转速表、压力比表、油量表、燃油压力表等。
  辅助仪表,指示液压、冷气等系统和各种部件工作情况的仪表,如指示襟翼、起落架、炸弹舱的位置的位置指示器,液压、冷气系统的压力表等。
  早期飞机上的仪表大都是以敏感元件带动指示装置的直读式仪表,或将传感器安装在仪表板上的远读式仪表。进入80年代,随着微电子技术、计算机技术和光纤、激光等技术的发展,航空仪表也发生了巨大变化,通过多路传输总线,将各系统之间的相关信息横向交联,构成以平视显示器和多功能显示器为中心的座舱综合显示系统,成为航空电子设备的终端,向智能化和综合化方向发展。飞行员可以根据需要任意调出所需的信息,一目了然,大大减轻了飞行员的工作负担。
  座舱温度控制系统 是对飞机座舱空气温度、压力、成分等参数进行控制,使舱内环境适合乘员生理要求的整套装置,又称座舱空气调节系统。在现代飞机上,它主要包括供气和温度、压力、湿度控制等分系统。供气系统供给座舱所需要的清洁空气。气源通常是发动机压缩器引出的增压空气,其后分两路,热空气路直接由气源引出,冷空气路经制冷装置引出。温度控制系统控制冷、热空气的混合比,平衡座舱的热载荷,达到所要求的座舱空气温度。有的飞机装有专门加温器,加温座舱空气。压力控制系统通过改变座舱排气量使座舱压力和压力变化速度按给定要求变化。湿度控制系统对座舱空气增湿或减湿,使相对湿度适宜。
  救生系统 1989年6月,法国巴黎布尔热机场,一架正在作超低空飞行表演的米格—29战斗机突然失去控制,机头朝下,向地面冲去,眼看一场机毁人亡的惨剧不可避免。就在飞机几乎接地的千钧一发之际,一个亮点弹出机舱,借助性能良好的弹射救生系统,驾驶员绝处缝生。这是弹射座椅在危急时刻又一次挽救飞行员生命的绝好例子。
  弹射座椅是二次大战末期问世的,至今已有半个世纪的历史,在此之前,军用飞机驾驶员的唯一救生设备是降落伞。一旦飞机被击中或出现重大故障,飞行员身背救生伞爬出驾驶舱,靠跳伞救生。随着飞机速度不断提高,高度加大,再靠飞行员自身的体力脱离飞机已不可能,于是采用弹射座椅(或分离舱)将乘员弹离飞行器救生的专用设备应运而生。最先研制弹射座椅的是德国、瑞典,英国后来居上,最著名的马丁·贝克公司的弹射座椅已在几十个国家广泛使用,成功地挽救了6000多名飞行员的生命。
  典型的弹射救生系统由弹射座椅、救生伞、弹射通道清除装置、个体防护装备和必要的应急物品组成。当飞行员应急离机时,拉动弹射操纵手柄,首先清除弹射通道(如抛掉座舱盖或炸开座舱玻璃),座椅靠火药燃爆的能量被推离飞行器,人与座椅一起在空中急剧减速和下降。这时,飞行员依靠穿戴的特殊服装和跳伞供氧系统的保护避免周围环境(低温、缺氧)的损害。当减速到一定速度、下降到一定高度时,人和座椅分离并打开救生伞,人乘救生伞安全着地。然后,可以利用随身携带的应急物品进行自救或求救,达到安全返回的目的。目前,弹射救生系统已能保证0~25公里高度、0~1200公里/小时速度范围内的安全救生。
  神秘的“黑匣子”
  飞机上有一位从不轻易抛头露面的神秘证人——“黑匣子”,它安装在飞机尾部最安全的部位,即使飞机失事坠毁,它也一般不会受到损坏。它的作用是在空难发生后,给事故的凋查人员提供证据,帮助他们了解事故的原因。
  黑匣子其实并不是黑颜色,它一般为鲜艳的橙黄色,便于人们在野外寻找。它也不是一个空匣子,而是一种专用的磁性记录器,由飞行数据记录器和驾驶舱话音记录器两部分组成。
  飞行数据记录器的记录能力为25小时,根据不同类型飞机的需要,可记录16~32个参数,比如飞行的高度、速度、时间、倾角、航向、油耗等等。一旦飞行事故发生,飞行员和乘客全部遇难,调查人员只要找到黑匣子,就可以了解失事瞬间和失事前一段时间里,飞机的飞行状况、机上设备的工作情况。
  驾驶舱话音记录器是一个无线电通话记录器,可以记录飞机上的各种通话,记录时间为30分钟。当记录满30分钟后,它就会自动将前面的旧记录抹掉,记录最新的话音。记录器有四条音轨:第一条记录飞行员与地面指挥机构的对话;第二条记录正、副驾驶间的对话;第三条记录机长和空中小姐对乘客的讲话;第四条通过驾驶舱内的监听器记录乘客舱内的各种声音。在事故调查中,它提供的原始声响,可以帮助调查人员了解,飞机失事是由于遇到了不良天气还是碰上了劫机者、还是飞机本身工作不正常,以便对事故作出正确的结论。
  黑匣子是本世纪40年代初开始出现的。第二次世界大战中,英国人首先将其用在军用飞机上,战后很快被广泛用于民用飞机。
  黑匣子由于其承担着特殊的“证人”使命,所以它必须经得起摔打,经得起水与火的严峻考验。在飞机坠毁时,按设计要求,它能够在1100℃的高
  2温下经受30分钟的烧烤;能在0.005秒内承受1000米/秒 的加速度;能被2吨重的物体挤压5分钟;能经受225千克重的钢棒从3米高的地方落下时的冲击力;能在汽油、机油、酒精、海水、电池酸液等各种液体中浸泡几个月。
  黑匣子不仅可以向人们提供飞行事故的某些真实原因,还可以帮助人们发现许多没有被人发现的事故隐患,当飞行员对飞机性能的某些方面有怀疑时,也可以打开黑匣子作检查,以防止可能发生的事故。
  人间特使
  航天飞机
  飞机不能进入太空,而火箭使用一次就报废。人们在思索,能否研制一种能进入太空的飞机呢?
  利用火箭发动机使飞机进入高空 (没有空气阻力)的想法由来已久。早在1933年德国人桑格尔就写了一本书,叫做《火箭飞行技术》,提出制造用液体火箭发动机做动力的超级轰炸机的可能性。第二次世界大战中他设计了一架火箭轰炸机,推力约1000千牛,用6000吨固体火箭助推起飞,可飞高145千米,航程达2万多千米,最大速度21240千米/小时 (5.9千米/秒),绕地球一圈需150分钟。但计算表明,要求发动机比推力400秒·质量比(总重对空重之比)等于10才行。而且研制费要300万英镑,故未能成为现实。德国人便把重点放在设计火箭歼击机上,最有名的是1940年研制的MC—163
  2原型机,这用两个109—509A火箭发动机(推进剂为过氧化氢)做动力,速度达965千米/小时。但发动机只能工作4.5分钟,在空中仅能停留20分钟,很显然是不能打仗的。第二次世界大战期间美国也制成了贝尔X—1火箭飞机
  (推进剂用液氧和酒精),于1944年12月飞行时最大速度达到1280千米/小时。1946年用B—29轰炸机把X—1带入高空抛放,然后自飞,创造了时速达1600千米。后来道格拉斯公司在50年代又研制了D-558—2MK—1和D-558—3MK—2火箭飞机。但没有实际应用,可经验是宝贵的。
  美国人搞航天飞机的想法由来已久。50年代初贝尔公司的道伦博格(前纳粹研制火箭的负责人)根据桑格尔的设想提出“波米”计划,为二级火箭航天飞机,形状和发射方式与“哥伦比亚”号航天飞机相差无几。可惜因技术关键太多未能开展研制。布劳恩此时曾在《柯里尔》杂志上撰文倡议研制航天飞机,我国火箭专家钱学森也曾研究过带翼的太空飞机问题,对美国朝野影响很大。1957年在前苏联卫星的刺激下空军提出用“大力神”Ⅲ发射“迪纳—索尔”航天飞机的方案 (又称X—20)。搞了6年,终因耗资过大,而被更简单的航天飞行器所代替。
  进入70年代之后,情况已远非昔比,1969年美国航宇局和国防部共同提出研制航天飞机的计划。
  开始,美国人雄心勃勃,计划采用法盖特提出的方案,搞全部可回收的航天飞机系统。简单地说,就相当于用一个和波音747尺寸大小相当的航天飞机从机场起飞,母机把航天飞机送入高空后,航天飞机脱离母机自己继续飞入太空,而母机则重新返回机场降落。为了节省氧化剂,发动机在大气中可由空气助燃飞行。这个方案当然理想,但要花费120亿美元以上,而且技术上难点也多,遭到国会反对,航天飞机计划也几乎夭折。由于尼克松总统力排众议,大力支持,才通过了一个半回收航天飞机系统计划,就是现在的第一架航天飞机(“哥伦比亚”号)。它实际上是用两个巨型固体火箭代替母机,把航天飞机(也叫轨道器)送上天后,固体助推器脱落用降落伞回收。由于想使航天飞机结构紧凑,多装有效载荷,便把入轨前使用的液氢、液氧另外装在一个大容器中,液氢、液氧用完后容器即抛弃,这很有点像飞机用的副油箱。这个方案约需60~80亿美元。本来计划1978年试飞,因经费不足的和技术问题到1981年4月12日第一架航天飞机“哥伦比亚”号才第一次试飞,并获得成功。
  迄今为止,进入太空的航天飞机共6架,其中美国5架,前苏联1架。它们是“哥伦比亚”号、“挑战者”号、“发现”号、“阿特兰蒂斯”号、
  “奋进”号及“暴风雪”号。
  航天飞机是通向太空的理想交通工具之一。人类没有停止在汽车、轮船、飞机之中,而是不断前进,向茫茫的宇宙进军,开发宇宙资源,为人类造福。
  太阳能飞机
  飞机在天空飞,可以说是“近天楼台先得日”。太阳有无穷的能量,能不能用太阳能来开动飞机呢?
  人类利用太阳能的历史,已经有千万年了,但主要是直接用它的光能和热能,如照明、取暖、烧热水等。直到近代,才有人把它的能量转变成电能。1983年,在意大利西西里岛,建立了一台塔式镜面反射发电站。180面大镜子把太阳光集中到一个装水的塔上,使水温升到500℃变成蒸汽,再推动涡轮发电机发电,电能可达1000千瓦。不过这种方法在飞机上是行不通的,飞机上没有那么大的地方,也不能承受那么大的重量。因此,要在飞机上利用太阳能,还得寻找别的办法。
  50年代初,由于半导体技术的发展,人们研制成功了能将太阳光直接转换成电能的太阳能电池。这种电池小得只有2厘米见方、零点几毫米厚。它不只轻便,而且光电转换效率高,可以达到15%。这就为飞机采用太阳能作动力打下了基础。
  世界上第一架以太阳能为动力的飞机就是由第一架人力飞机的设计者美国麦克里迪设计,由美国国家航空航天局和杜邦公司制造的。它基本上就是在人力飞机的基础上改造而来的,叫“蝉翼企鹅”号。在它的翅膀上装的是太阳能电池。电池发出电,供给电动机,电动机带动螺旋桨,使飞机得以飞行。1980年8月,这架飞机由一个瘦小的女驾驶员布朗操纵,在14分32秒钟内,飞行了3.2公里。整架飞机22.7公斤,驾驶员体重为45千克。
  1980年12月,美国又专门设计了一种太阳能飞机“太阳挑战者”号,它的机翼和尾翼上都装有太阳能电池,总计达1.6万多片。它的重量为 90千克。可在4360米高空,于8小时内飞行370公里。1981年7月7日,这架飞机由美国人普达塞克驾驶,从巴黎起飞,以每小时40英里的速度,飞行了5小时19分钟,飞越英吉利海峡,成功地降落到英国东南部的拉姆斯盖特。
  太阳能飞机不仅在能源危机的情况下,开辟了新的、取之不尽的能源,而且它没有废气、废油,不会造成环境污染;它没有发动机的轰鸣,不会有噪声污染。它还有飞行平稳、舒适的优点,是一种十分有前途的新机种。但是它也有许多缺点,一是太阳能电池目前还十分昂贵,飞机成本高。据估计,一架单座太阳能飞机,仅太阳能电池费用就达数千美元。还有,太阳能电池的效率还是太低,产生的电能有限,而且在夜晚和天阴时就没法工作。所以,太阳能飞机要进入实用阶段,还得解决许多难题。目前,科学家已在研究一种新型的太阳能电池。也许不久的将来,太阳能飞机会有更大的功率,载重更多,飞得更快、更高、更远。
  微波飞机
  用微波的能量作飞机的动力,是航空学家多年来的理想。但是,由于技术的问题,一直未能实现。目前,美国和加拿大等国家,已经开始对这种飞机进行实质性的研制,使这一理想的实现出现了曙光。
  微波是一种波长较短的无线电波,早在19世纪,德国物理学家赫兹和美国科学家特斯拉就对它进行过研究。这种波有一个特点,它可以聚集成一个很窄的波束,定向向外界发射。这样,它的能量不会分散,而且可以集中到一处去使用,这就为远距离使用无线电的能量提供了可能。
  1899年,特斯拉在高楼上进行了微波发射的试验。第二次世界大战后,由微波传输能量的试验获得成功。接着,就有一些国家开始研究,怎样从地面发射微波能,供飞机作为发动机的动力。为了使飞机能得到足够的动力,可以多设一些微波发射站。通过定向天线,把各个发射站发出的微波集中到一起,对准飞机发射。而且要随着飞机的飞行,地面定向发射天线也要跟着一起运动,以便微波能可以持续不断地集中到飞行的飞机上。
  微波飞机目前有两种设计方案。一种是螺旋桨飞机。这种飞机上装有半导体整流设备,它可以把地面射来的微波能,转变为直流电,直流电带动电动机,电动机带动螺旋桨旋转;另一种是喷气式飞机。这种飞机可以将接收到的微波,直接加热喷气发动机的压缩空气,然后从尾喷管中喷出去。
  1978年10月,加拿大设计了一种高空无人驾驶飞机。它的翼展长为4.57米,双翼呈V字形往上翘。机体后面装了一个大圆盘。在大圆盘和机翼上,装着一层薄薄的半导体硅整流二极管,类似太阳能飞机上的光电管。这架飞机的用途是准备作为微波通讯的中继站,以代替通信卫星。
  美国也设计了一种这样的飞机,它的翼展为46米,总重量为270千克,上面装有40马力的电动机来带动螺旋桨。供应这架飞机微波束的地面天线阵列分布面积为91米×91米,足以使飞机在2万米的高空,作“8”字形的航线飞行80天。这架飞机是为环境监控用的,上面装有68公斤重的遥感设备,可拍摄地面交通和农作物、森林情况,采集大气中二氧化碳浓度等。
  美国设计的“阿波罗”号轻型飞机,则是一种用微波作动力的喷气飞机。它是一种有人驾驶的飞机,可以爬高1.2万米。这种飞机还备有自带燃料,以便在大气层外飞行。
  微波飞机的优点是可以大大节省传统的燃料,减少燃气的污染。但是,它却带来了另外一种污染,即电磁波污染,微波是一种对人体和环境都十分有害的电波。此外,目前这种飞机的造价(主要是地面微波发射设备)较大,而且飞机的载重也有待提高。
  空天飞机
  航空是飞机的“专利”,飞机只要携带足够的燃料,它就可以在大气层中纵横驰骋,从东半球的中国北京到西半球的美国纽约,只需要17至18个小时。
  航天,则是火箭的“专利”了,因为火箭既带着燃料又带着助燃剂,它不依赖空气,可以到大气层以外自由飞翔。由于大气层外十分接近于真空,因此火箭在飞行时几乎没有任何空气的阻力,飞行速度可以很容易地提高,而且可以长期保持不减速,特别适合于环球航行。但是火箭在降落返回地面时可就麻烦了,如果让它直接降落下来,非粉身碎骨不可!
  航天飞机呢?虽然航天飞机功能齐全,能布放卫星、发射航天器,观天测地,进行材料、药物和生命科学的实验,但也有不尽如人意之处。因为它还是用发射火箭的方式来发射的,然后以轨道器绕轨道运行的方式在空间执行任务,再以飞机的飞行方式降落地面。因此,航天飞机不仅需要大型发射设施,还需要4000至5000人为发射服务,另外,由于发射准备工作时间很长,每月最多只能发射2次。
  有什么办法取飞机和火箭两者之长、补两者之短呢? 20世纪80年代,开始研制的空天飞机,正是这种新型的飞行器。空天飞机的全称应该是“航空航天飞机”,它是航空技术和航天技术的结合,既可以在飞机场水平起飞和降落,又可以在外层空间远距离地高速滑翔飞。如果让空天飞机运货载客,它只要个把钟头,就可把货物从欧洲运到澳洲,花2个小时,就可把乘客从华盛顿送到东京;如果让空天飞机飞出大气层,它也可以把几吨重的人造卫星送上近地轨道。
  德国科学家设计的“森格尔”空天飞机,看上去像是一架大飞机背着一架小飞机,大飞机确实是装着航空发动机的巨型飞机,小飞机则是用火箭发动机推进的轨道飞行器。开始,大飞机背着小飞机沿着机场跑道水平起飞、爬高;当达到预定的飞行高度和飞行速度时,大小飞机互相分离,大飞机由驾驶员操纵着返回机场,小飞机就开动火箭发动机继续加速、升空,以高超音速进入外层空间,借助惯性远距离滑行;最后,小飞机返回大气层,滑翔降落到地面机场。
  德国人在设计这种“森格尔”空天飞机的时候,英国人则在设计另一种称为“霍托尔”的空天飞机。这种空天飞机采用了航空发动机和火箭发动机两者兼有的新型混合发动机。在低空稠密大气层中飞行时,它像航空发动机那样,吸取大气中的氧气作为助燃剂,与它带的液氢燃料燃烧而产生推力;而在高空,在大气层以外飞行时,就改用机上自带的液氧和液氢,像火箭发动机那样独立地工作。
  英国科学家设计的“霍托尔”空天飞机是从1982年开始准备的,原计划1996年底进行飞行试验,2000年提供使用,用它来搭载宇航员、运送物资器材、施放回收人造卫星等。
  但是,“霍托尔”空天飞机的研制并不一帆风顺,就像历史上许多其他的发明创造一样,它也遇到了许多困难和麻烦。就以它的发射方式来说,就已经作了多次变动。
  “霍托尔”空天飞机开始采用地面火箭滑车助飞的方法来使它升空,由于它的起飞重量是着陆重量的5倍,如果用起落架滑行起飞,这个起落架必定又大又粗又笨重;而用火箭滑车起飞,单单起落架一项就可以减轻5吨左右的重量,如果加上其他重量,预计可减重70吨左右呢!
  火箭滑车有轮式与轨道式之分,“霍托尔”空天飞机原来打算采用结构相对较简单的轮式火箭滑车助飞升空,即采用火箭发动机为动力,沿着专设的轨道运行。但是,由于缺乏研制大型轮式火箭滑车的经验,要确保火箭滑车在500多千米的时速下不失控,车轮不离开地面,不产生飘移,能可靠地定向行驶,并能及时纠控,保持稳定,按遥控指令及时释放“霍托尔”空天飞机,所遇到的难度是很大的。因此,英国宇航公司转而考虑用大飞机驮着
  “霍托尔”空天飞机在空中发射,这样,“霍托尔”空天飞机或许也就像德国的“森格尔”空天飞机一样了。
  使用哪一种大飞机来驮“霍托尔”空天飞机呢?有人建议用“波音747—500”型宽体喷气客机,因为这种飞机有较好的性能,美国宇航局也已用同类波音飞机成功地改装成空天飞机的运载母机。但是,“波音747—500”型宽体喷气客机只能装211.3吨物体,“霍托尔”空天飞机只有经过“减肥”,才有可能实现空中发射的目标。也有人建议用“安—225”巨型喷气式运输机来驮“霍托尔”空天飞机,因为它可以装250吨物体。
  如果“霍托尔”空天飞机直接从地面机场起飞,它会怎样呢?它开始会加速爬升,2分钟后飞行速度就超过了音速;9分钟时,飞行速度达到5倍的音速,高度迟26千米;从此,它由航空发动机转入火箭发动机工作,继续加速飞行;达到90千米高空时,飞行速度达到了7.9千米/秒的“第一宇宙速度”,这是任何物体若要摆脱地球引力必须具有的最小速度,这时,指令关闭火箭发动机,空天飞机沿着弹道轨迹依靠惯性飞行,在高度为300千米处进入近地空间轨道,继续高速滑行;飞行要结束时,使用机上的轨道机动系统控制飞机减速、下降,并改换姿态,准备返回;进入大气层的时候,“霍托尔”空天飞机抬头挺胸,就像一只斗胜了的大公鸡,迎着大气阻力从天而降;当下降到距离地面25千米高空时,改变飞行姿态,转入滑翔飞行,进行着陆准备;最后,它将以16°的进场角和88米/秒的着陆速度飞进机场跑道,减速滑行1800米距离以后,便可以平稳地停住了。
  漫谈交通
  交通工具的起源
  人类生活离不开“衣、食、住、行”,“行”指的便是“行路”,它是我们生活中的基本需要之一。
  今天,我们已经能够做到地面行、天上行、水中行了。然而,在遥远的古代,人类的祖先却只能在地面上行走,当时,还没有飞机、轮船、汽车,甚至连最基本的轮子还没有出现。
  让我们拉开人类发明交通工具的序幕吧!
  远古时期,我们的祖先刚刚从树上来到地面生活,住在大然的洞穴里。白天,男人外出打猎,女人操持家务;晚上,一家人围着火堆,烤着野味……
  随着时间的推移,人们打猎的范围越来越大,离开居住地的距离也越来越远。这样,将猎物搬回洞穴就要花不少力气——小的问题不大,扛在肩上就行;大的就扛不动了,只能牵着尾巴拖回洞穴。
  有时候,为了垒屋子、堵洞穴,人们往往需要从较远的地方将木棍、泥土、石块等搬过来。力气再大的人,每次能搬动的东西也是不多的。“有什么办法每次能搬更多的东西呢?”人们一直在寻找省力的办法。
  偶尔,正在搬运石块的人抬头看到远远归来的那个人正拖着一头鹿往回走。
  “唉,那是个好办法!这石块能拖就好了。可是,怎么拖呢?对,去拿一块兽皮试试!”他很快就取来了一块带着尾巴的兽皮,将石块放在上面,拖着尾巴一试,嗨!果然省力不少。同样搬运一次,使用兽皮要比人搬多好几倍的石块呢!
  从这个偶然事件开始,兽皮便成了人类最原始的交通工具了。尽管以今天的目光来看,兽皮拖运十分简单也十分粗陋。
  当然,问题并没有全部解决。不久,人们发现,在高低不平的地上用兽皮拖运重物,兽皮用不了多少时间就被磨破了。
  与此同时,由于人类在不断进化,他们需要搬运的东西越来越多,兽皮拖运便越来越不能满足需要了。
  有没有更好的办法来代替兽皮拖运呢?
  早期的轮子是光滑的圆木,人们借助于这些圆木在地面上移动物体。这种原始的方法,今天我们偶尔还可以看到。
  可以想象,古时候,人们将一根根树木砍倒在地时,那些枝枝杈杈较少的圆木就会在平坦的地面上滚动起来,这种司空见惯的现象触发了人们的灵感,“唉,它会自动滚动起来,这真是可以省不少力呢!”有人由此萌生了
  “偷懒”的念头。
  于是,对于那些粗大的圆木,人们不再吃力地去搬动它们,而是砍掉一些枝杈,在地上推滚起来……渐渐地,使用这种方法的人越来越多了。
  熟能生巧。人们发现,当两根圆木一前一后滚动时,上面再搁一根也能一起前进。就这样,加在圆木上的东西越来越多,最终,有人将一块粗糙的木板放在两根圆木上面,再在上面放重物,这样既稳当又安全。
  这就是今天所有车子的最早雏型!
  考古学家们发现,大约在公元前2000年的古埃及文物中,就有了轮子;我国古代也早已有了发明和使用轮子的记载。
  随着时间的推移,作为陆上交通工具关键部分的轮子也从原始形态逐渐变得更轻便更实用,开始出现了几块板拼合成的圆形车轮,把两个圆形车轮用横木固定在木板车的两端,就可以轻便地载物运货了。在公元前3200年左右的美索不达尼亚的乌尔国王巴尔基的坟墓中,就绘有苏美尔战车的镶嵌画,画上就有这种圆形车轮的马车。
  木制的圆形车轮毕竟太笨重了,能不能发明一种比较轻的车轮呢?有人想了一个办法,创造了一种带辐条的车轮,就是用几根木棍将车轮和车毂连接在一起。这种车轮便是今天的自行车轮、摩托车轮的前身了。
  公元前2000年左右,美索不达尼亚人就开始使用这种带辐条、装车轴的车轮了,这种车轮很快就被用于战车上,战马拉着战车所向披靡,勇往直前。
  我国在公元前 1300年左右,也出现了装车轴的车轮,并将它装在马车上。参观过秦始皇兵马俑遗址的人们一定会发现,大多数战车都装着这种车轮。秦始皇统一六国,“车轮”也帮了不少忙呢!
  有了轮子,整个世界才真正地“转动”了起来。
  早期车辆
  在很早很早以前的远古时代,人类就以自己的聪明智慧和勤劳的双手制成了石镞、骨矛和石斧等,用它们作为打猎和防御猛兽伤害的工具,有时还用来捕鱼捉鳖。这些工具实际上是人的手臂的加长和延伸,它们为人类社会的进步和发展做出了贡献。
  随着生产的发展,需要进行以物换物的交易和把大量的猎物、产品运送到较远的地方,这就不能单靠人背肩扛或者用牲畜驮运了。在这种情况下,人们就想制造一种能代替人负运重物的工具,使人们的腿脚也得以延伸。于是作为运输工具的车辆就开始出现了。
  车辆是人类在劳动生产中逐渐产生出来的。人类社会的发展需要车辆。据说,当时人们在劳动中看见蓬草被风吹得在地上轻快地滚动,很受启发,便用圆木、滚石等当轮子来运送重物,这就出现了最原始的车。后来,人们将这些实心轮进行改进,并创造出轮轴,才制成了用辐条支撑轮缘的车轮。这时,真正实用的车辆就相应问世了。
  相传最早制造出车子的,是我国夏朝时名叫奚仲的人。在当时那种情况下,人类的知识很贫乏,生产条件又非常原始,能制造出车确实是件了不起的事情。这也表明了中华民族对人类社会的发展做出了应有的贡献。
  夏朝时,还专门设立了管理和制造车辆的官员,叫做“车正”。发明车的奚仲,就是当时的一位车正。《荀子·解蔽》这部古书就记载有“奚仲作车”的事情。
  到了3000多年以前的商朝,我国就有了供人乘坐和运东西的车子。那时的车,多为牧畜拉的牛车和马车。有了车,人们就不用肩挑手提重物了,还加大了负重量,也可以坐上去代步行,速度也快了。与此同时,还出现了专门造车的手工业。
  车辆出世后,除运物载人以外,很快就用于作战,成为最早的战车。
  春秋战国时期,马车得到了大发展,各诸侯国之间交战都用战车。到了秦朝,秦始皇出巡时就乘坐制造精美的铜马车,而且也大量使用马车作为战车。这些可从已出土的秦代兵马俑的文物中得到证明。
  三国时期,尽管连年战乱不止,但在车轴的制造和改进上仍然取得了不少成就。其中有蜀国诸葛亮设计制造的“木牛流马”——独轮车。这种车子延续下来,就成为我国南方市区一直使用的江洲车子。魏国有一个叫做马钧的能工巧匠,制成了指南车。它的设计巧妙,无论车子如何行驶,车上站立的小木人的手总是指向南方。另外,还有一种能计算里程的记里鼓车。这种车上也有一个木雕的小人,当车每走一里(500米)时,小木人就用锤击鼓一次。
  明朝时,出现了人推战车和带铁锚的炮车。为了防止大炮在发射时跳动,人们用铁爪或铁锚插入地里,保证稳固安全。后来的大炮助锄就是在这种战车的基础上制成的。到了清朝,我国还造出了四轮铁甲战车。
  国外古代车辆的发展情况和我国大致相似。例如,西亚在4000多年前出现了马车。在2500年前,古波斯(现伊朗)国王基尔在战争中使用过一种车厢像马蹄形的两轮战车。这种车由两匹马拉,由一个战士驾驶。在车辆两端的外面,各装有一把刀锋向前的大弯刀,以便在战车冲锋陷阵时刺杀敌人。但是,国外的车辆(尤其是战车)几千年来变化不大。13世纪后,有人尝试用风帆或弹簧来代替畜力牵引车辆。如 1600年荷兰人西蒙·斯蒂文曾制造了一辆有桅杆和帆的船形车,叫做“陆地巡洋舰”。这种车和海上的帆船一样,依靠风力吹动前进。不过,它并未在战场上得到实际使用。
  16世纪后,欧洲各国多使用木制车辆,而且还将这种车作战车使用。1530年,俄国曾使用过一种叫做“游街城堡”的大型战车,车内可乘坐10~15名战士,并可通过车厢的窄缝进行射击。
  人类社会的发展,促进了车辆的不断改进和创新。然而,几千年来,车辆的发展却很缓慢,始终离不开人推马拉,既装得少,又走得慢。
  记里鼓车
  记里鼓车是中国古代用于计算道路里程的车,由“记道车”发展而来。有关记道车的文字记载最早见于汉代刘歆的《西京杂记》:“汉朝舆驾祠甘泉汾阳……记道车,驾四,中道。”可见至迟在西汉时期,即已有了这种可以计算道路里程的车。到后来,因为加了行一里路打一下鼓的装置,故名“记里鼓车”。它是皇帝出行时仪仗队专用车辆之一。记里鼓车又有“记里车”、
  “司里车”、“大章车”等别名。有关它的文字记载最早见于《晋书·舆服志》:“记里鼓车,驾四。形制如司南。其中有木人执槌向鼓,行一里则打一槌。”晋人崔豹所著的《古今注》中亦有类似的记述。因此,记里鼓车在晋或晋以前即已发明了。
  《宋史·舆服志》对记里鼓车的外形构造有较详细的记述:
  “记里鼓车一名大章车。赤质,四面画花鸟,重台匀栏镂拱。行一里则上层木人击鼓,十里则次层木人击镯。一辕,凤首,驾四马。驾士旧十八人。太宗雍熙四年 (公元987年)增为三十人。”
  由上述文字可知记里鼓车的外形十分精美,充分显示出当时手工技艺的高超水平。
  记里鼓车的记程功能是由齿轮系完成的。车中有一套减速齿轮系,始终与车轮同时转动,其最末一只齿轮轴在车行一里时正好回转一周,经机械传动系统作用,车子上层的木人便击鼓,以示里程。至于“十里击镯”的记程原理,同击鼓记里的机械原理大同小异,只是这一减速齿轮系的末端齿轮是在车行十里时正好回转一周,因此“十里一击镯”。
  417年,刘裕率军打败晋军,将缴获的记里鼓车、指南车等运回建康(南京)。后宋太祖平定三秦时又将其缴获。宋仁宗天圣五年(1027年),内侍卢道隆又造记里鼓车,《宋史·舆服志》对卢道隆的记里鼓车齿轮系设计有详细记载。后来吴德仁又重新设计制造了一种新的记里鼓车。吴德仁简化了前人的设计,所制记里鼓车,减少了一对用于击镯的齿轮,使记里鼓车向前走一里时,木人同时击鼓击钲。
  驿站马车
  100年前,美国西边尚未开发,那时,驿站马车很普遍。
  在18世纪后期,出门坐驿站马车往往又慢又不方便。那时差不多条条道路都有很多的车辙和泥坑,小河很少架设桥梁,所以过河还得在浅水处涉水而过。
  有位英国女演员于1832年乘坐驿站马车来美国游览,谈到她那次长途旅游时,她说:“4匹马拖着马车在奔驰……,我们坐在后面的车厢内,被马儿拉走,一路上我们在车厢内颠簸,撞击,前冲后仰,摇摇晃晃。我现在确实认为,那条路是马车所跑过的一条最差劲和最险恶的路。”
  后来又修建了几条较好的路,有一条连接美国东部与邻近的西部几个州的国家公路在1811年动工,40多年后竣工。这条公路从马里兰州延伸到伊利诺斯州。这样一来,驿站马车就能在平稳的公路上行驶,速度当然比以前快多了。1858年约翰·勃特菲尔德以两辆驿站马车办起了南方邮务公司,这就开创了西行的驿站马车运输业务。勃特菲尔德公司的驿站马车大约花 20天便可把邮件、货物和乘客从密苏里州的圣路易斯带列加州的旧金山。你可能觉得速度太慢了,不过在当时却是够快的了。
  每辆马车最多可载9位乘客,由4至6匹马牵拉(有时候由骡拉)。乘4500公里路程的马车费是多少?西行的单程标票是200美元,而东行的单程票只花150美元(还可免费携带40磅重的行李)。因为去东部的乘客少,要想多招徕乘客,票价就得低一些。
  不论是西行或东行,路上都有危险。由于驿站马车常常遭到匪盗的抢劫,所以马车上有乘警押车和保护。劫持驿站马车是西部亡命之徒的惯用伎俩。虽然歹徒一般喜欢三人或多人结帮抢劫,但是那位“黑巴特”就是大名鼎鼎的劫车者,而且他是单枪匹马地行劫。
  巴特是一个很奇特的歹徒。他声称从未对乘客行劫过,也未开枪打过谁。他只是把驿车上的保险箱洗劫一空,再在箱内留一张诗体的便条。巴特作案失手是由于有一次他把手帕遗落在犯罪现场,警方由手帕顺藤摸瓜,最后将他缉拿归案。执法官很惊讶地发觉这个劫车大盗竟是一位衣冠楚楚、一脸慈祥的老绅士,名叫查尔斯·E·波登。当问波登他是否就是黑巴特,波登答道:
  “长官,我是有教养的啊!”波登因几起罪行而坐了4年牢,后因表现良好获释,从此便销声匿迹了。
  尽管像“黑巴登”这类土匪常常拦车抢劫,但是勃特菲尔德那家驿站马车运输公司还是迅速发展。没多久,马车从2辆增 250辆,马车经过的沿途设置了160个车站。勃特菲尔德养了1800匹马,雇佣了1000多名车夫,以及其他的工作人员,包括修车铁匠、看马人、马医,还聘用了旅店主,当乘客在沿途车站休息时,由这些旅店主给乘客供应饭菜。
  1866年,勃特菲尔德把驿站马车运输公司变卖给亨利·韦尔斯,即韦尔斯法戈公司的老板。运输公司在韦尔斯的领导下蒸蒸日上。西部各个小镇上的人们常常邮寄订购商品,然后翘首以待地等候韦尔斯法戈公司的驿站马车的到来,车上总是满载着他们邮购的商品。听到“驿站马车来啦”的叫声,会使人人眉开眼笑。
  但是,“驿站马车来啦”这种吆喝声过了一阵子就再也听不到了。1869年美国第一条横贯全国的铁路建成后不久,驿站马车便不提供客运服务了;虽然它还继续承担着一段时期的货运业务和邮件递运业务,不过渐渐地这两项业务也被铁路运输所取代。
  草原小帆
  “都好喽!”赶马车的人嚷道。
  “全好啦!”回答声来自一辆辆的大篷马车。
  车队长吩咐说“出发”,马车夫们便噼噼啪啪地甩响马鞭,车轮辘辘驶过坚硬的地面。
  “集合!”车队长喊道。又一队大篷马车开始了西行长途跋涉。
  在19世纪40年代,美国密苏里州独立城一带经常看到西行的大篷车队。成千上万个早期开拓者沿着俄勒冈小道移居西部,在荒无人烟的地区开始了新生活。他们乘坐很好的交通工具,那便是有篷顶的货运马车。
  大篷马车确切的名称是科内斯托加宽轮大篷马车。因为在18世纪初,在宾夕法尼亚州兰开斯特县的科内斯托加小河畔最先造出这种马车,因而得此名。科内斯托加大篷马车是供在崎岖不平的道路上赶车用的,由4匹至6匹马,或4头至6头骡,也可以是牛来牵拉。车轮大,直径为1.5至1.8米,所以马车不易陷入泥浆中。马车的铺位有近5米长,铺位底部的两端上翘,这样行车时,铺位内的货物不会移位,不会撞坏。这种大篷马车最大的优点是它的最大载运量竟有6000千克。
  大篷马车最引人注目的大概是车上的白帆布篷顶。篷顶是套在马车车身上部的一个个圆形框条,从而形成圆顶。有时候篷顶高出地面3米左右。帆布篷顶可使乘客以及他们随带的财物不至于日晒雨淋,在西去俄勒冈 3000多公里的行程中,是会经常遇上大风大雨天的。人们给这种大篷马车一个浑名:“草原上小帆”。因为风吹草动,草原上绿色的草场好像是碧波万顷,当大篷车奔驰在大草原,车身被绿色波浪遮掩,人们只见它那高高的篷顶,宛如水上小帆。有些大篷马车还真有篷帆呢,这样在急风劲吹的平原上赶路就快多了。
  俄勒冈小道起始于密苏里州的独立城,沿普拉特河向西延伸。大篷车队由此出发,西行1300公里便到独立小岛,这可以说是西行途中的一个歇脚点。一般说来,西行开拓者要在这儿好好休息,备足途中需用的水,因为下一站是去洛基山脉,所以水是很需要的。洛基山脉地带有好几条小道,可全是又陡又险。不过,这些小道通向布里杰要塞,它是一个军事前哨,在那儿可以舒舒坦坦休息。
  接下来又在山区和旱地赶车,才到了斯内克河,它位于今天的爱达荷州。马车沿河跑到现在俄勒冈边界。再过旱地便到哥伦比亚河流域,对面是西俄勒冈葱翠的草原。看上去是在对面,实际上到对面那郁郁葱葱的西俄勒冈得再行3200公里路程。
  俄勒冈小道上赶路的主要是去西部的开拓者,而圣菲小道就不同了。它是货物的运输线。商贩把成吨的食品、咖啡、糖果、肥皂、烟草、布匹、皮鞋甚至还有洗衣搓板装上大篷马车。往返于圣菲小道的商贩偏爱用骡来拉车,而不是用牛。因为骡比牛跑得快,沿途又能乖乖地吃草,而且骡的蹄比牛蹄结实,能长期经受西南地带砂石的磨损。
  美国军队在19世纪40年代就是经过这条圣菲小道从墨西哥接管了新墨西哥领地。至于俄勒冈小道,到1850年,已经有12000个开拓者,经这儿去西部定居。那时俄勒冈这块土地已经有足够多的居民,可以组成美国的一个准州。
  只是在9年后,也就是1859年,俄勒冈加入联邦,成为美国第33个州。如果没有这可依赖的大篷马车,上述这些情况本来什么也不会发生的!
  自行车今昔
  早期自行车
  自行车,南方人叫它脚踏车,或单车,四川省重庆人称为“洋马儿”。它是一种简单的交通工具,仅仅是利用机械力来代步。在社会经济文明发展的初级阶段,拥有广大市场。
  然而,自行车的发明也经历了漫长的岁月,经过了几代人的努力才达到今天的这个样子。
  1790年,有个法国人名叫西夫拉克,他特别爱动脑筋。有一天,他行走在巴黎的一条街道上,因为前一天下过雨,路上积了许多雨水,很不好走。突然,一辆四轮马车从身后滚滚而来,那条街比较狭窄,马车又很宽,西夫拉克躲来躲去幸而没有被车撞倒,还是被溅了一身泥巴和雨水。别人看见了,替他难过,还气得直骂,想喊那辆马车停下,讲理交涉。西夫拉克却喃喃地说:“别喊了,别喊了,让他们去吧。”
  马车走远了,他还呆呆地站在路边。他在想:路这么窄,行人又那么多,为什么不可以把马车的构造改一改呢?应当把马车顺着切掉一半,四个车轮变成前后两个车轮……
  他这样一想,回家就动手进行设计。经过反复试验,于1791年第一架代步的“木马轮”小车造出来了。这辆小车有前后两个木质的车轮子,中间连着横梁,上面安了一个板凳,像一个玩具俱似的。由于车子还没有传动链条,靠骑车人双脚用力蹬地,小车才能慢慢地前进,而且车子上也无转向装置,只能直行,不会拐弯,出门骑一会儿就累得满身大汗。
  刚刚出现的新东西总是不那么完善的。西夫拉克并不灰心,他继续想办法加以改进。可惜,不久他因病去世了。
  1818年,在德国有个看林人名叫德莱斯,他每天从村东的这一片树林,走到村西的另一片树林,年年如此。他想:如果人坐在车子上,走走停停,随心所欲,不是很潇洒吗?德莱斯开始制作木轮车,样子跟西夫拉克的差不多。不过,在前轮上加了一个控制方向的车把子,可以改变前进的方向。但是骑车对依然要用两只脚,一下一下地蹬踩地面,才能推动车子向前滚动。当德莱斯骑车出门试验的时候,一路上遭到不少人的嘲笑。尽管如此,他还是十分喜欢自己创作的这架“可爱的小马崽”。
  1840年,英格兰的铁匠麦克米伦,弄到了一辆破旧的“可爱的小马崽”。他在后轮的车轴上装上曲柄,再用连杆把曲柄和前面的脚蹬连接起来,并且前后轮都用铁制的,前轮大,后轮小。当骑车人踩动脚蹬,车子就会自行运动起未,向前跑去。这样一来,就使骑车人的双脚真正离开地面,以双脚的交替踩动变为轮子的滚动,大大地提高了行车速度。1842年,麦克米伦骑上这种车,一天跑了20千米,由于不小心,踩车的速度过快,撞倒了路上的一个小女孩,因此而被警察抓住,并处以罚款。其罪名是野蛮骑车。
  1861年,法国的米肖父子,原本职业是马车修理匠,他们在前轮上安装了能转动的脚蹬板;车子的鞍座架在前轮上面,这样除非骑车的技术特别高超,否则就抓不稳车把,会从车子上掉下来。他们把这辆两轮车冠以“自行车”的雅名,并于1867年在巴黎博览会上展出,让观众大开眼界。
  1869年,英国的雷诺看了法国的自行车之后,觉得车子太笨重了,开始琢磨如何把自行车做得轻巧一些。他采用钢丝辐条来拉紧车圈作为车轮;同时,利用细钢棒来制成车架,车子的前轮较大,后轮较小。从而使自行车自身的重量减小一些。
  从西夫拉克开始,一直到雷诺,他们制作的5种型式的自行车都与现代自行车的差别较大。真正具有现代形式的自行车是在1874年诞生的。英国人罗松在这一年里,别出心裁地在自行车上装上了链条和链轮,用后轮的转动来推动车子前进。但仍然是前轮大、后轮小,看起来不够协调,不稳定。
  1886年,英国的斯塔利,是一位机械工程师,从机械学、运动学的角度设计出了新的自行车样式,为自行车装上了前叉和车闸,前后轮的大小相同,以保持平衡,并用钢管制成了菱形车架,还首次使用了橡胶的车轮。斯塔利不仅改进了自行车的结构,还改制了许多生产自行车部件用的机床,为自行车的大量生产利推广应用开辟了宽阔的前景,因此他被后人称为“自行车之父”。斯塔利所设计的自行车车型与今天自行车的样子基本一致了。
  1888年,爱尔兰的兽医邓洛普,从医治牛胃气膨胀中得到启示,他把家中花园里用来浇水的橡胶管粘成圆形,打足了气,装在自行车轮子上,前往参加骑自行车比赛,居然名列前茅,引起了人们极大的兴趣。充气轮胎是自行车发展史上一个划时代的创举,它增加了自行车的弹性,不会因路面不平而震动;同时大大地提高了行车速度,减少了车轮与路面的摩擦力。这样,就根本上改变了自行车的骑行性能,完善了自行车的使用功能。
  由此可知,从18世纪末叶起,一直到20世纪初期,自行车的发明和改进,经历了大约200年的时光,有许多人为之奋斗不息,才演变成现在这种骑行自如的样式。一个发明从构想到实现,使梦想成真,只有坚持不懈、顽强努力,最终一定会成功!
  现代自行车
  随着社会生产的发展和人民生活的提高,自行车也在不断地改变面貌,更新换代,出现了许多式样新颖、功能多样的各种类型的现代自行车,形成了一个五光十色的现代自行车王国。
  本世纪50年代以前,那种颜色单调有着菱形车架的男式自行车和具有弯梁的女式自行车还长期处于统治地位。可是,到了60年代,轻便型的旅游自行车逐渐兴起,向老一代自行车提出了有力的挑战。70年代,小轮自行车以其玲珑轻巧的身姿风靡一时。70年代中期以后,各种变速车又成了世界市场上的紧俏货。与此同时,越野自行车、竞赛自行车、多轮自行车、电动自行车、多人骑自行车、太阳能自行车、客货两用自行车、踏板式自行车等竞相问世,展现了新一代自行车绚丽多采的风姿。
  在这些一代更比一代强的现代自行车中,有几位佼佼者更引人注目:
  越野自行车 就是能在山区或农村的土路上行驶的自行车。国外在这方面发展较快,已经生产了不少这类自行车,其中以美国70年代制成的BMX(它是英文Bicycle Moto Cr-oss的缩写名字,意思是“仿摩托越野自行车”)越野自行车最为有名。
  这种BMX越野自行车,是根据越野摩托车的要求,对普通越野车加以改进而制成的。它使用了铬钼高强度钢管,以手工焊制车架和前叉,从而保证车子在飞越陡坡落地时,接头部位不致破裂散开。在车把上还焊有加强横杆,并在横杆上装有防撞胶套,以保证行驶安全。另外,它还像摩托车那样,在前叉上安装了减震器,又将后叉改为摆动式。在减震器的帮助下,后叉可以相对车架作上下减震摆动。这些措施大大提高了自行车的越野本领,使它成为广大青年喜爱的体育用车。
  普通越野自行车大都采用直径约50厘米的小轮和减震器。由于车轮较小,它的车座可以在较大范围内升降,适合于男女老幼骑用。它和一般自行车不同之处还在于,它的后叉将后轮独立悬挂在车架上,在横梁上的减震器的作用下,可以在车架上摆动,以减轻车体的震动。我国天津自行车厂,曾经生产过这种自行车。
  电动自行车 不用人蹬而使用电池驱动的一种自行车。它的长处在于,可以节省能源,而且不产生噪音和污染环境。
  70年代,曾出现了一种用普通自行车改装的电行车。它是用一种不需减速器的高效率的盘式电动机直接装在前轮上驱动的。这种车最大的时速为24公里。我国重庆市的“电动自行车公司”生产了一种中华牌电动自行车,是将盘式电动机直接装在后轮上,结构简单,使用方便。
  多人骑自行车 这种车多作为旅游和体育用。一般为两人用两轮车,骑车人前后骑坐于车上,一起用脚蹬踏,以带动后轮上的飞轮转动,使车子前进。
  现在我国城市中出现的一些小轮三轮车,也可说是一种多人骑自行车。不过,这和国外的多人骑自行车不同,它实际上是一人蹬车,其他人坐车。这种车适合送儿童上学或老人就医,还可以作为3口之家的旅游车,以及供残疾人骑用,因而颇受人们的欢迎。
  另外,现在还研制成一种圆盘车轮(也叫碟形车轮)的新型自行车。这种车轮重量轻,阻力小,强度高,特别适于赛车使用。它是采用新型混合材料整体铸造而成的,不易产生弯曲变形。
  21世纪的自行车
  现在,世界上不少国家为燃料供应、交通车辆拥挤和环境污染等问题所困扰,加之人们对旅游和健身的兴趣日益浓厚,因而把目光集中在构造简单、使用方便,不消耗能源、无污染而又到处可骑行的自行车身上,对它寄予很大希望,并下大力气设计试制适合各种不同需要的新型自行车。
  那么,未来的自行车是什么样的呢?让我们先来看看设计师们构思的蓝图和试制的样车吧!
  用新技术、新材料全副装备的赛车现在很多国家自行车运动颇为兴盛,经常进行自行车比赛,大大促进了赛车的生产和发展。设计师们采用最先进的技术和最好的材料设计和试制出21世纪赛车的样车,很引人注目。美国的新型赛车采用了无辐条的碟形轮,这样可大大减弱快速行驶时的空气阻力。车轮里面是轻质材料制成的蜂窝结构,外面覆以碳纤维材料的蒙皮,既轻又结实。车轮上装的是充氦气的很窄的轮胎。用钛合金制的脚蹬,比一般的脚蹬重量轻一半。车架是以铝管外包玻璃纤维材料制成的。甚至运动员穿的运动衣和骑车戴的头盔都采用了宇航技术和材料。日本富士公司的赛车,车架下梁采用铝蜂窝结构外包合金板材料,强度高重量轻,价格也较低。这种车的设计在成本上有一定优势,因而具有竞争的能力。意大利设计的赛车,由于使用轻质宇航材料和具有减少空气阻力的良好外形,使它跻身于21世纪赛车之列。它的像飞机翅膀似的车把,可减少风的阻力。在车把中部还加装了里程速度表。所使用的碟形车轮可大大减轻骑行时的空气阻力。
  封闭或半封闭的坐式自行车未来的自行车将由现在的“骑”式蹬踏改为
  “坐”式蹬踏。这是因为“坐”式比“骑”式优越:首先,“坐”着蹬踏比
  “骑”着蹬踏迎风的面积小,所受的阻力也就小,蹬踏起来轻松省力;第二,
  “骑”着蹬踏主要是人的臀部受力,长途骑行臀部会感到疼痛。而“坐”着蹬车时,人的臀部、腰部甚至背部都能承受身体重量,受力面积比“骑”着增大5倍以上,从而使人感到坐在车上像坐在沙发里一样舒适;第三,坐着蹬车比骑着蹬车使出来的劲大得多。据实际测量可知,人在坐着蹬车时,右腿最大蹬力为262公斤,左腿为241公斤。而骑着蹬车时,每条腿最大的蹬力不超过70~80公斤(骑车人的体重),两者相比,坐着比骑着的蹬力几乎增大了两倍之多,因而车的速度也就快多了;第四,坐着蹬车人体的重心下降了约30~40厘米,行驶起来更安全,不会因车子碰到障碍或急刹车时,使车向前翻倒。国外正在研制的坐式自行车,多为封闭或半封闭型的,也有敞开型的。封闭的坐式自行车比半封闭或敞式的优越。这种车在风雨天或在泥泞的路上行驶时,像坐在小汽车里一样使骑车人不受雨淋和保持身上干净。由于车子全封闭,又呈流线型,所以可大大减少空气阻力。车身上部可以制成类似飞机上装的气泡式透明座舱盖,外形光滑,看起来大方、美观。车内还可设置一个小的放行李的车舱。在车身两侧装有两个小型的支撑轮,在遇到侧风或停车时可将支撑轮放下着地,保持车子稳定。不用时,可将支撑轮收起来。
  当然,未来的坐式自行车多是杠杆型或杠杆踏板型的新结构,与现在的自行车大不一样了。
  便携式折叠自行车折叠化、小型化是未来自行车追求的目标之一。这种车携带方便,是你出外旅游或短途出差的好帮手。旅游或出差时,可随身将折叠起来的自行车带上,到达目的地后,随时可将它打开骑用。另外,今后住高层楼房的人日益增多,折叠自行车更现适合这些人使用,它搬动存放都十分方便,解决了人们的后顾之忧。
  有一种剪刀式折叠自行车,折叠后加上货框就是一个小型手推车。无论是地铁列车上,或是电梯间里,携带它都很简便。
  还有一种可变速的轻便自行车,虽然它不能折叠,但结构简单,重量很轻,而且安装了先进的变速器,骑行和搬运起来都很轻便省力。
  这种轻便车采用的是杠杆式踏板装置,式样新颖。车的闸线由手柄和车把中穿过,就使车子显得紧凑简练。它的车座是固定在车架后斜梁上,这样车座不仅能在弹簧支持下上下运动,而且还可以左右摆动,以适应骑车时人的臀部的运动,减少臀部与车座之间的摩擦。更重要的是,它有一个巧妙的变速器,在人踏动脚踏杠杆遇到车子上坡时,变速器能自动增大驱动力,所以车子上坡或逆风行驶时也不费力。
  从自行车到摩托车
  如果追根溯源的话,摩托车的祖先就是自行车。
  早在100多年前,当自行车刚刚在一些城市街道上出现的时候,人们就想着为它配上发动机,使它成为能自行行驶的车子。这是因为当时的技术已经发展到一定水平,特别是蒸汽机已经出世,人们越来越需要一种使用动力的自行交通工具了。
  1869年,美国人鲁佩尔制成了一辆蒸汽自行车,是将一台双缸蒸汽机安装在自行车上,并用两根长长的连杆带动后轮旋转。而用煤加热的小型蒸汽锅炉悬挂在车子前后轮之间,锅炉上的小烟囱则伸在车座的后面。在车把上分别安装着用来控制车速和车间的手柄。它的车速可达每小时60千米,比人力自行车可快多了。制造这辆最原始“摩托车”的鲁佩尔曾自豪地说:“这辆自行车可以爬上任何一道坡,可以把任何一匹马甩在自己的后面。”这辆蒸汽自行车现珍藏在美国斯米措尼安学院博物馆内。
  就在鲁佩尔制成蒸汽自行车的同时,法国人贝洛也制成了一辆蒸汽自行车。车上装的是贝洛自己设计制造的单缸蒸汽机。这台蒸汽机小巧玲珑,配有烧酒精的多管道锅炉。由锅炉产生的蒸汽由蒸汽机转换成动力,通过皮带传动来带动自行车后轮转动。这辆车的速度较低,每小时仅15千米。
  后来到了1884年,有个叫科普兰的美国人也制成了一种蒸汽自行车。他将蒸汽机安装在大小轮之间,配用了一台单缸立式锅炉。由蒸汽机产生的动力通过皮带传送给后轮,使车子向前行驶,车速约为每小时24千米。当时,美国一家公司根据科普兰的设计图纸生产了200辆两轮和三轮蒸汽自行车。
  上面这些蒸汽自行车虽然比一般自行车进了一步,但由于它们都存在着行驶时烟尘滚滚、炉渣难以清除和锅炉易爆炸等缺点,因而未得到普及和推广。于是,人们转而去寻找那些既无烟尘,又无噪声,而且不会烧灼人的发动机。
  1893年,美国人莱布制造了一辆弹簧自行车,它上面的弹簧上满弦后所储存的能量,车子只以每小时48千米的速度行驶了700米的路程。显然,这种弹簧自行车无法实际使用。接着,法国人瓦列在一辆三轮车上安装了一台气压发动机,并增加了减速器,采用链式传动来带动后面的两个轮子。但是,由于它所储存的压缩气体有限,仅够车子行驶较短的路程。如果增加储气量,必然会使车于的重量大大增加。结果,这种气压自行车也只好束之高阁了。
  人们从失败中发现,那些笨重的发动机、大而沉重的弹簧箱和庞大的储气罐,与“瘦小”的自行车架是极不般配的,而且往往还会使自行车因不堪重负而摇摇晃晃,或者行驶不了多远就翻倒。因此,需要继续寻找更适合自行车使用的发动机。
  山重水复疑无路,柳暗花明又一村。就在人们为自行车寻求新的发动机而又无着落时,1885年在德国莱茵河畔的一个小村庄里,一辆木车架、铁箍木轮的十分粗笨的内燃机自行车呱呱落地诞生了,它就是人们所说的“第一号机动车”。由于在自行车上装的是内燃机,而内燃机的英文词是motor,读出音就是“摩托”。所以,这辆装有内燃发动机的自行车,可说是世界上第一辆摩托车了。
  实际上,这辆摩托车的发明和创造者——德国工程师戈特利希·戴姆勒,在车上装的是一台四冲程汽油发动机。当初,他并没有明确地想要研制摩托车,只不过是想利用骨架简单的自行车试验一下汽油发动机的性能,并看看能否将它作为这类车子的动力。然而,这一具有划时代意义的试验,却成功地发明了摩托车。
  令人感到惊奇的是,戴姆勒这辆“第一号机动车”已经具有现代摩托车的某些结构特点,如在汽油发动机中装有自动进气阀和机械式排气阀,采用了加热管点火装置,以及使用了较简单的离合器等。它的时速12千米,发动机功率为0.5马力。
  世界上第一辆摩托车问世之后,各种各样的摩托车便相继涌现出来,使摩托车的面貌不断改观,与现代摩托车越来越接近了。
  时过两年,即1887年,英国人爱德华·巴特勒就制成了三轮汽油机摩托车。它用链条传动,发动机为旋转进气阀汽油发动机。这辆三轮摩托车的双缸内燃发动机气缸是横卧在车上的,发动机的两根连杆从两边与车子后轮直接相连,没有离合器和传动箱,因而车子行驶起来难以控制,特别是在车速较高时,车子就更不好操作了。后来,巴特勒发现了自己设计上的锗误,就在车上增加了行星齿轮减速装置。这种减速器在当时来说,是很先进实用的。
  另外,巴特勒还率先在摩托车上使用了二冲程双缸内燃机(戴姆勒使用的是四冲程内燃机),并在发动机上配有电点火系统和带浮子室的化油器。
  到了1894年,德国人希尔登布兰德兄弟对内燃机自行车进行了改进,并第一次使用了充气轮胎。他们在车上安装了一台二冲程双缸发动机。车子后轮上方像挡泥板一样的拱形箱,是用来作为发动机水冷却系统的散热器。从外形上可以看出,这种车与现代摩托车已比较近似了。他们兄弟俩还为自己的车起了个“摩托车”的名字。从此,摩托车这个名字在世界各地流传开来,并一直沿用至今。
  汽车时代
  早期的汽车
  你想了解汽车的身世吗?
  可以告诉你,汽车的老祖宗就是马车。这是因为一切早期的机械车辆都是在普通马车的基础上发展起来的。
  汽车的发明家们最先看到的就是用牲畜拖拉的马车。由于社会发展需要新车辆,他们就想着在马车上装上某种装置,使马车不用马拉就可以行驶。于是,在15世纪就出现了早期的人力车辆。
  你可以从想象,坐在车子里的那个人既是乘客,又是驾驶员,还是车子的“发动机”。他拉着一根绳圈,来转动上下两个辘轳。而下面的辘轳旋转就会使相互咬合的齿轮转动,齿轮又与车子的后轮轴相咬合。这样一来,车子就会动起来。可以肯定,它行进的速度决不会比人走得快。
  至于这种车子的方向盘在哪里,它是如何拐弯和绕过障碍物等问题,看来很容易解决。如果想使车子向右转弯,驾驶的人就停车,从车里出来,先抬起车子前面两个轮子,把它朝向右边即可。这种操作虽然很原始,但它却对以后汽车的转弯和方向盘的发明有着启迪的作用。
  我们再来看看18世纪初期出现的一种人力“自动”车。这辆车子的“发动机”,是由坐在车子后面的仆人来担当的。仆人用脚踩着踏板,通过杠杆使车轮转动的。车子的转弯是由一个装在前面两个轮子上的圆盘和套在圆盘上的缰绳来操纵的。它有点像方向盘了。
  用人当发动机开动车子,当然不是好办法。人的力量有限,而且不能坚持很久。在这种情况下,发明家们就积极寻找其他动力来开动车子。例如,在17世纪时就设计了一种装着钟表机构的“自动”车,它是利用发条(弹簧)作动力的。另外,还有人仿照帆船制成了带帆的车子,想以风力作动力来推动车子前进。这种车子的设计家连车上的方向盘都是模仿帆船舵的样子,将它装在车子的后面,与后轴相连,再带动一个轮子的后轮转动,就可使车子左右转弯。
  虽然那时候的发明家们用他们所熟悉的力量——人力、弹簧力或风力等没有造出完全适用的车子,但是这些早期的“自动”车却在汽车发明史上留下了一定的功绩。可以说,正是由于出现了这些各式各样的“自动”车,才使后来的汽车发朋家制成和改进了那些汽车的重要部分——车身、车轮、齿轮和链条传动装置、转向装置等等。它们也就是萌芽中的汽车。
  汽车的发明
  达·芬奇是15世纪意大利非常杰出的人物,他既是一个大画家,又是一个自然科学家和工程师。他除了给后世留下许多艺术性很高的绘画作品,还留存下来许多工程机械方面的设计图纸,自动行驶车辆的设计图纸就是其中之一。
  15世纪,双轮马车在意大利的石子路上来来往往,达·芬奇在幻想着有一辆自行行驶的车子载着他到处漫游。他站在自己的画室窗前,望着不远处的钟楼,出神地想着。“铛—铛—铛”钟楼上的指针重合在12时,敲起清脆的钟声。钟声唤醒了沉浸在想象中的达·芬奇,“钟为什么能敲呢?里面有发条作动力,对,用发条可以试试这种自动行驶的车。”达·芬奇转身坐在桌子前,把他的设想画在纸上,第一张以发条为动力的自动行驶车辆的设计图纸在大画家手中诞生了。只是,他的理想留在了纸上,还没有变成现实。
  1519年,达·芬奇离开了人间,带着他的梦想,他的遗憾。但是,他的设计图纸却留在了人间,引起了人们浓厚的兴趣,按照达·芬奇的图纸造一辆这样的车子,也成了更多人的梦想。
返回书籍页