必读网 - 人生必读的书

TXT下载此书 | 书籍信息


(双击鼠标开启屏幕滚动,鼠标上下控制速度) 返回首页
选择背景色:
浏览字体:[ ]  
字体颜色: 双击鼠标滚屏: (1最慢,10最快)

工业创造与发明

_11 佚名(现代)
  1916年1月9日,戴维决定亲自前往矿下试验,但遭到他的好友华德生医生的反对。
  “先生,这是一种极危险的试验,您是科学家,您应对完善、改进安全灯负责,不能亲身前去冒险,以防万一……这个任务应该由我来担当。”
  华德生举着安全灯走进充满瓦斯的矿井,远处观看的人们都怀着忐忑不安的心情,静静等候试验结果。
  华德生不断向矿井深处走去,一位正在挖煤的老矿工,突然发现远处有火焰,就恐惧地大喊道:
  “熄火,快熄火!”
  但灯光仍继续在前进,老矿工像大祸临头一样,紧闭双眼,连连在胸前划着十字……
  当老矿工发现华德生医生手提着安全灯在注视着他的时候,他明白了一切。
  他疾步跑上去,拥抱着华德生说:
  “这征服‘地狱’的灯光,是您给我们矿工送来的吧!”
  华德生微笑着说:“不,这是戴维先生的功劳,我们都应该感谢他!”
  英国政府为这一发明,在矿区举行了隆重的庆祝大会,各界代表在大会上发表了高度赞扬的演说,工人们向戴维赠送了许多纪念品。
  有人看到这种矿工安全灯各国都很需要,就建议他向政府申请专利发明权,这样可以得到一大笔收入。人们满以为戴维会采纳这个建议,但戴维却严肃地说:
  “我从来不想做这样的事,我的发明是为了广大工人兄弟们的生命安全,是为了祖国工业的发展,我唯一的目的是为人类谋些福利,我不希望发财,只要能够为人类做些有益的事,那便是我唯一的酬报了。”
  为了纪念戴维的卓越贡献,人们把这种矿工安全灯称为“戴维灯”。
  一个玻璃工人的贡献
  当夜幕降临的时候,都市里最引人注目的就是街头的霓虹灯了。鲜艳的颜色,多彩的变幻在黑色天空的背景上显得格外醒目,就像进入了神话的境界。
  如果白天去看一下霓虹灯,会发现那是一些像小拇指粗细的玻璃管子。这种管子又名叫盖勒斯管。
  为什么有这样一个奇怪的名字呢?原来,这是科学家盖勒斯首先制造出来的。盖勒斯生于德国图林根的一个农村里,最初是一个吹玻璃的学徒工,到处流浪,后来积攒了一点钱定居在波恩,开了一个小作坊。专门吹制物理和化学实验时所需要的玻璃仪器。由于他的手艺很好,所以生意还不错。
  盖勒斯是一个喜欢问为什么的人。每做完一个仪器,他总要琢磨一下这个仪器是做什么用的。如果弄不懂就去查书或请教来定做仪器的科学家。因此,他慢慢变成了一个业余科学家。在他的小作坊里不仅有煤气灯,各种工具,还有一些自己制作的仪器设备,像真空泵什么的。
  1858年他接受了德国物理学家普吕克尔的定货,制作一种抽成真空的玻璃管。为了完成这批定货,盖勒斯使用了一种真空水银泵,这种真空泵虽然很原始,但比起当年格里克做马德堡半球实验时用皮革制成的抽气桶要好的多。
  要把一个容器里的空气抽空是一件十分缓慢的工作。抽真空的原理和把一根木棒掰成两截扔掉一半一样,如此这样掰下去扔掉,手里总会剩下一点木棒。容器里的空气被真空泵分去一部分排掉,再分去一部分排掉,到最后容器里总要剩一点空气的。为了把管子内的空气抽得尽量空,盖勒斯日以继夜地操作着真空水银泵,这可真是一件简单而又枯燥的工作。
  夜幕降临了,作坊里只剩下盖勒斯,他一定要在今夜把这个仪器完成。突然,他发现真空管里有淡淡的闪光,开始很暗,但随着真空度的升高增强起来,这个新发现使盖勒斯的困意全部消失了。
  盖勒斯虽然是一个手艺人,但是对于科学的追求也是同样强烈的。其实上述现象在100多年以前就有人发现。1676年,法国物理学家皮卡德在搬运水银气压计时发现,当水银柱摇晃的时候,在水银面上方的真空区域里,有发光现象。他记录下这种现象叫做“水银荧光现象”,但不能解释。到了1705年,英国的赫克斯认为这是一种与电有关的闪光现象。搬运水银时,由于水银和玻璃管之间的摩擦使玻璃管带电,所以真空区域发光。赫克斯用抽气机把一个玻璃钟罩抽空,并用静电起电机使玻璃钟罩带电,钟罩内果然发出辉光。法拉第也对这类现象进行了研究。但是由于当时的技术还不发达,不能得到很高的真空,所以影响了对这种发光现象的进一步探索。
  科学的发展带动了技术,技术的发展又反过来报答了科学的恩典,科学和技术密不可分,如鱼如水,亲如手足。到了盖勒斯的时代,不仅有了能抽高真空的水银泵,还有他的同胞鲁姆科夫发明的能产生高压的感应线圈。
  牛顿说过:“我是站在巨人的肩膀上。”盖勒斯也是这样,但是有一点是属于盖勒斯本人的,就是他有极好的玻璃吹制手艺和科学的探索精神。因为无论是真空玻璃管还是水银泵,都离不开玻璃制品的吹制。
  盖勒斯不需要像葛立克那样带上手套摩擦转动的硫磺球起电,因为使用感应圈只要一合上电闸就能立即产生几千伏的高电压。盖勒斯在玻璃管里装上一对铂制的电极,一个是阳极,一个是阴极,把它们分别与感应圈的两端连接起来。这样抽成真空的玻璃管中就发出了辉光。后来,盖勒斯发现,当玻璃管中充以不同成份的稀薄气体时,玻璃发出的光色不同。这个有趣的发现使他兴趣大增。我们今天看到的霓虹灯就是盖勒斯管发展起来的。管中不同的颜色是由于里面充入了不同的气体。例如,充入氖气就会发出橙红色的光,充入氩气就是翠绿的颜色。
  现在把这种稀薄气体在高压下的发光现象叫辉光放电。当时定制这种真空玻璃管的科学家普吕克尔,也在研究这种低气压下的放电现象。与盖勒斯不同的是,他的目的是探求这种辉光的本质。
  因此,普吕克尔并不满足于产生各种美丽的辉光,而把注意力集中到管内真空度对于放电辉光的影响上。因此,他定制了各种不同真空度的管子进行研究。他发现,当玻璃管里的真空很高的时候,辉光现象反倒不见了,但是在正对着阴极的玻璃管壁上,会发出绿色的荧光。这显然是由于有一种射线打在玻璃管壁上才会产生这种荧光。普吕克尔也不知道这是什么东西,只知道这种射线是从阴极发出来的,因此给它起了一个名宇叫“阴极射线”。可惜普吕克尔没有把实验进行到底就去世了。因此阴极射线的研究工作主要由他的学生希托夫以及英国物理学家克鲁克斯进行下去。
  为了对阴极射线的性质进一步研究,克鲁克斯制成一种高真空管,后来人们称为“克鲁克斯管”。有人也称为“希托夫一克鲁克斯管”,因为希托夫也曾独立制成这种高真空放电管。
  由于“克鲁克斯管”管内的高真空度,管内没有多少气体,所以放电时没有辉光,阴极发射的射线可以畅通无阻的射到对面玻璃上。克鲁克斯还发现,如果把对面玻璃内壁上涂上硫化锌,就是夜光表盘上那种荧光质,就会发出更强的光,甚至可以照亮附近的东西。这种发光现象称为“冷光”。
  冷光现象引起许多科学家的兴趣,许多人在实验室进行这种有趣的实验。
  克鲁克斯的父亲是一个穷裁缝,由于一项精明的投资发了财,这样才使克鲁克斯有一个安稳的专心学习和研究的环境。他毕业于伦敦皇家化学院。最初他迷上了基尔霍夫开创的光谱学。不同的元素在燃烧发光时都有自己特定的颜色。1861年,克鲁克斯在光谱中发现了一条不属于任何已知元素的美丽的绿线,他知道他发现了一种新元素,他给它起名为铊,意思是“绿枝”。他也因此而成名,被选入皇家学会。
  1875年制成的真空管的真空度比盖勒斯管提高 7 500倍,因此阴极射线就可以更强的打在玻璃壁上。克鲁克斯还把一个雕花的小金属片预先放在阴极射线经过的路线上,结果在管端的荧光屏上就出现了清晰的影子,他还把一个风车样的小轮放在玻璃管里,这个轮子竟被阴极射线“吹”得转动起来。现在在任何一所中学物理实验室中都可以看到这几个有趣的实验,通常叫它为“阴极射线管”。
  阴极射线虽然十分有趣,但是,它的本质是什么却其说不一,有的人认为是一种电磁波,因为赫兹关于电磁波存在的实验刚刚成功。赫兹和他的学生也做了这方面的实验,并想努力证明这是一种电磁波。
  但是,英国物理学家瓦尔利发现,阴极射线可以在磁场中发生偏转,用左手定则判定,这可能是一束带负电的物质颗粒流。于是两派学说展开了一场历时二三十年的争论。
  电和化学结伴而行
  伏打电池的发明使人类有史以来,头一次有办法产生一股持续的电流,从此电学的发展就像插上了翅膀一样。许多令人振奋的消息不断传来。
  一个重大的功绩就是电和化学的联姻,它给我们生活带来的变化,也许是伏打所没有想到的。
  使电学和化学联姻的月下老人,应首推英国的戴维了。1778年出生的戴维,是一个木匠的儿子,他的青年时代是在贫困中度过的。上学的时候戴维不喜欢学校的功课,所以不久就辍学去给一位药剂师当了学徒。但是这份工作把他引入了一个奇异的化学世界,使他热爱上了化学。因此,他在药剂师家中开始了自学。他不仅学习书里的科学内容,还要亲手实验来验证那些理论,这给他的东家带来了一些小小的灾难,实验室里常常传来爆炸声,还夹杂着有毒的烟雾。主人只好把他解雇了。但是,戴维经过自学,最后成为一名化学家。20岁的时候,戴维竟然成为一所气体医疗研究院的主任。
  戴维的兴趣非常广泛而且有极强的探索精神。在气体医疗研究所期间,他用化学的方法制造出各种气体,而且每次都冒险地去呼吸一下这种气体,他吸过氢气、氧气、纯一氧化碳等,有些气体几乎使他窒息,但是戴维的鲁莽行动也得到了报偿,就是他发现了笑气 (一氧化氮),这是一种使人有点眩晕,陶醉的气体,常令人大笑的气体,后来用于做牙科手术的麻醉剂。
  戴维真正成为一名世界著名的科学家是由于一个偶然的机遇引起的。
  当时英国皇家学院是一所很有名气的大学,但是经费日渐短绌,虽然有班克斯爵士的资助,仍然很难维持下去。
  创办这所学院的伦福德爵士,打量着这个拥有了新出现的电池和其他静电先进设备的实验室,产生了一个念头,“能不能举办一些电学讲座,表演各种新奇的电学现象来筹集资金呢!”这倒是个好主意,但是人们会不会掏钱买票来听讲座呢?不过,无论如何是值得试一试的。
  要使科学讲座受欢迎,就需要有一个优秀的演讲人。一定要讲得让人听了开心,看得高兴才行。经过朋友的介绍,戴维来到皇家学院伦福德的办公室里。经过一番交谈后,戴维被聘为该学院的讲师。1801年的一天晚上,伦福德和听众一道坐在大厅里听戴维的头一次演讲。这位青年讲的好极了。伦福德如释重负,疑虑皆除。戴维精通化学和电学,他知道如何引起听众的兴趣。他那魔术般的表演,使每一项试验都引起欢呼。当人们离开会场时,真是满心畅快,心满意足。
  科学讲座大受欢迎,每晚的入场券销售一空,许多贵族把听科学讲座当成时髦的玩意,他们穿上漂亮的衣服,就像去参加盛大宴会一样争相到会,特别是太太们和小姐们更是成群结队去听这位英俊的年轻人讲演。尽管他们听不太明白演讲者说的是什么,但那些时而火花四溅,时而隆隆作响,时而五彩缤纷的实验深深吸引了他们。听科学讲座成了英国上流社会的一种时尚,这可真是要给伦福德记上一功。这不仅筹集了资金也普及了科学知识,使科学成为一个人人关心的事情。戴维也因此而名声大振。
  戴维绝不以出了名、赚了钱为满足,因为他最热衷的是进行科学研究。他是一个化学家,讲座又使他精通了电学,他对伏打电池也入了迷。思想锐利的戴维在思考,既然化学能产生电,那么电能不能产生化学反应呢?
  最早思考这个问题的是英国科学家尼科尔逊和卡莱斯勒,在伏打给皇家学会会长描述了他的伏打电堆之后6个星期内,他们就发现了当往水里通电流的时候,能见到气泡产生。这是1800年5月2日的事。
  富有实验经验的戴维得知这个消息后,如获至宝,就像得到了埋藏宝藏的地图一样,他立即动手重新做了这个实验。他在一支大烧杯中注入蒸馏水,放两根细铜线进去,然后用两个试管将两条电线罩住。外面再用一口大玻璃容器盖严这一切,并把里面的空气抽光。
  当一切设备布置妥善后,便将电线接通到电池上,电流顺着电线流到水里,泡泡便出现在两个电极上。戴维细心地把泡泡破裂后放出的气体收集在试管里。
  实验时他还注意到,随着实验的进行,烧杯内的水逐渐减少。过了一会儿戴维把电池断开,取出试管,仔细地分析里面的气体。
  他在两个试管里得到的气体,一种是氢气,另一种是氧气。氢气的体积恰好比氧气多一倍。原来水被电分解了,变成了二份的氢气和一份的氧气。平时我们常说水是由两个氢原子和一个氧原子组成的,这个化学结构是戴维发现的。尼科尔逊仅仅是发现了电解水的现象。
  电解水的实验在戴维的面前展现了一片完全荒芜的土地,人类还没有开垦它,这里遍地是黄金,而戴维就是一位幸运的拓荒者,他知道,一个新的领域,一个完全陌生的电化学世界正在向他招手。为了进一步研究,他亲手建造了有 250多块金属板的电池组,当时这个电池组在世界上是首屈一指的。戴维是一位化学家,他知道许多化合物可以分解成更简单的,我们现在叫做元素的物质。他相信电有力量能把那些紧紧连在一起的元素分解开。他不仅向物质的水溶液通电,而且向各种熔融状态下的物质通电。结果是惊人的,1807年10月6日,电流通过熔融的钾碱,释放出一种金属。当把这种闪亮的金属小块放到水中的时候,小块金属在水中旋转,奔跑并放出淡紫色的火焰。戴维高兴得如醉如狂地跳起舞来。
  这种金属,戴维把它叫做钾,钾的化学性质极为活泼,能撕裂开水分子和氧化合,放出的氢气燃烧后发出淡紫色的光。
  戴维实际上发明了电解的方法,一条崭新的化学途径从此出现了。戴维就像降落在一个童话世界里,发现新的元素几乎是垂手可得。在发现了钾的一个星期后,他又从苏打溶液中电解出钠。1808年,他在采用白则里建议的方法基础上又经过某些改进,分离出钡、锶、钙和镁。他还分离出硼,但是硼的发现比另一个“淘金人”盖吕萨克晚了9天。
  电解的方法后来大量用于工业中,许多非常难于提炼的金属用电解的方法可以轻而易举地得到。这许多关于电解金属的实验中,最富有故事性的,是在几十年以后,提取出现在为我们大量使用的铝。
  现在铝制品到处可见,铝锅、铝壶、铝饭盒,还有那掠过长空的喷气式飞机,身上大部分是铝,铝和别的金属形成合金,既轻又结实,可以担当许多任务。
  铝是世界上储量最丰富的金属,但是又是最难提炼的金属之一。奥斯忒1825年首先制得了铝,当时他用金属钾在汞中配成的溶液处理氢氧化铝,得到一种金属残渣。但他不知道是什么。1827年德国科学家韦勒首次弄清楚了那是铝,并首先提炼出纯铝,但是提炼费用十分高昂,直到1852年,生产一磅铝的成本要花到545元美金,因此铝比金银更贵重。你可以设想,把你厨房里的一把铝制的平底锅拿回到100多年前的时代,会价值连城的。
  过了29年,法国人德维尔搞出了一整套铝的工业生产法。1855年在巴黎博览会上展出了一些铝条。每磅要90美元。法国皇帝拿破仑三世到博览会参观,见到这种金属,简直着了迷。德维尔用铝制成一件嘎拉嘎拉响的玩具送给皇帝,让襁褓中的王子玩,皇帝很高兴,于是订购了一批铝质刀叉,供举行国宴时使用。这种餐具只给予特别的贵宾,等级稍低的贵宾只好委屈他们使用普遍的金银餐具。
  拿破仑三世曾想用铝制成兵器,但生产过程太慢,成本又贵,只好作罢。只让一些士兵戴上一个铝制的小牌,以炫耀拿破仑的财富。但是科学家在这方面的努力却一直没有停止。
  在实现工业大规模炼铝方面,要归功一名青年学生,他的名字叫霍尔。有一天,一位教授偶然说到,谁若能发明种炼铝的便宜办法,不仅对人类是重大贡献,自己也会成为百万富翁。霍尔决心试一试。
  霍尔大学毕业后,仍念念不忘这件事,回到家里,向父亲表示要独自进行试验。他父亲很支持儿子的想法,这位老先生觉得,儿子暂时不出去工作赚钱,在家里呆一段时间也无妨,聪明的儿子也许真能发明点什么。
  父亲答应儿子利用屋后的小木栅。霍尔知道化学家本生已经利用电解的方法得到铝,但是当时由于缺乏充足的电力,不能大规模生产。1867年发电机发明后,人们不必只依靠电池获得电流。这正是研究大规模生产铝的大好时机。
  任何一个发明家都不可能超越他的时代,但是可以把握住时机。发电机的出现为霍尔的伟大理想铺平了道路。
  霍尔做了一此理论探索后,就着手在木棚里为自己安装设备。必要的设备很快安装好了,年轻的霍尔便埋头工作。他日夜努力,不断地改变矿石的配方,一个星期一个星期过去了,在短短9个月里,果然找到了一种用电来提炼铝的最佳方案。
  他的办法是这样的,将含有铝的冰晶石矿石熔化,再将氧化铝放进冰晶石的溶液中,令它融解。于是通电到这两种消融的混合物中,电立即发生效用,将物质分解。一条电线上出现泡泡,这是氧化铝中所含的氧,泡泡升上液面,消失在空气中。
  过一会,霍尔关闭电源,把熔液中的另一条电线抽出来,果然有了银白色的纯铝附着在电线上。霍尔坐在椅子上,满意地笑了,又一跃而起,轻快地跳起舞来。
  “从此铝不再是有钱人才用得起的贵重金属了。”霍尔想:“人人都可以使用铝了。”
  电解法不仅可以从矿石中取出铝来,也可以用于精炼金属。电线里用的铜纯度很高,就是用电解的方法提炼的,俗称电解铜。
  电镀是电解原理的一种应用,电镀美化了我们的生活:闪亮的自行车车把,镀银的刀叉,录音机上银色的按钮……它们能穿上这么漂亮的金属外衣,都要归功于电镀。
  发明电梯
  早在公元前236年,古希腊学者阿基米德曾经创造了一种用绳索和滑轮操纵的省力机械。多少年过去了,人们运用这种机械来运货,出现了各式各样的升降机。
  这些升降机的特点是:完全依靠人力来作业,虽然省劲,但很费时。尤其是不够安全,往往一有故障,机械全部瘫倒,什么事也干不成。
  1852年,在美国一家商业公司里,有一个名叫奥第斯的搬运工。他和他的伙伴们每天开动升降机,把货物提升到楼上,又从楼上回到底层。当时的升降机比中世纪时代的进步一些,是一根很粗的绳索吊着一个铁丝编成的笼子。有时为了运货快些,搬运工也随着货物一起提升。万万想不到的是,曾经发生几次绳断、铁笼坠下的严重事故。奥第斯见了工友的尸体,感到十分伤心。
  从此,一方面奥第斯虽然开升降机时也心里不安;但是,另一方面也激发他开动脑筋:我不能老是等待摔下那一天到来呵!奥第斯的文化不高,他不气馁,找来许多书本,如饥似渴地学起来。同时,他找到了些泥巴、木片、硬纸、绳索、齿轮、弹簧、棘爪等一大堆零件和材料。伙同几个好友,一起制造一种安全性好,不依靠绳索,而借助齿轮的机构来提升的升降机。
  经过了多少次失败,听到了难以计数的冷嘲热讽,奥第斯咬咬牙。他的决心是不可动摇的。他四处求教,虚心听取意见。改进,改进,再改进……
  终于在1854年的一天,美国纽约市的水晶宫博览会大厅里,热闹非凡。一次别开生面的表演即将出台,观众看到:
  一位满脸络腮胡子的大汉,正站在装满木箱、铁桶等的升降机平台上,让升降机徐徐开动。当在场的人都能看见平台的时候,大汉突然下令:“砍断绳子!”咔嚓一声,吊绳软软地跌落了下来,而平台稍微下滑一点点,就被周围的弹簧和棘爪紧紧地锁住,纹丝不动!在场的上千观念倒吸一口冷气,爆发出雷鸣般的掌声。站在平台的大汉挥动帽子,向大家频频致意,他大声地说:“女士们、先生们,一切平安,一切平安。谢谢诸位。”
  这位大汉就是勇敢过人、虚心好学的奥第斯。
  1857年,奥第斯集资开办了电梯公司,升降机不仅可以运货,而且还可载人。它的用途更广了。1904年奥第斯公司率先又研制成功不用齿轮牵引的电梯,从而为建造高楼的运输工具打下良好的基础。到了1932年美国纽约曼哈顿区的帝国大厦建成,安装了可供102层楼使用的电梯。从此,电梯的花样越来越多,除老式的箱式电梯外,还有观光电梯、双层电梯、照明电梯等。
  现在,电梯已经成为高层建筑物中必须安装的设施。它每天帮助人们上楼、下楼,节省体力和时间,而且今天的电梯比过去更加安全、更为方梗了。或许大家并不清楚,奥第斯是电梯的第一个发明人哩。
  更新时代
  爱迪生与留声机
  1876年,美国发明家爱迪生开始研究电话。那时的电话机,距离稍远就听不到声了。因此,爱迪生研究用电话线路的中途装置——中继器进行中转。
  在进行电话中继器的研究实验中,爱迪生想在收话机的振动片上加上一枚钢针,用来把声音的振动变成波形,刻划在一种板上,以便将声音保留下来。爱迪生当时估计,如果钢针能顺利地刻出波形,就将钢针放在刻出的波纹上滑动,便能从收话机的振动片上发出声音。他日以继夜地研究这个问题,终于完成了一张设计图。
  爱迪生的助手名叫科劳迪。爱迪生画好设计图后把科劳迪叫来,指示他按照设计图制造机器。科劳迪觉得奇怪,搞不清到底造的是干什么用的机器,很不摸底。
  尽管科劳迪不了解爱迪生设计图的用意,但他还是很快制成了这台机器。在机器上有个金属圆筒,在木台上装有转动圆筒的手柄。摇动手柄时,圆筒一边旋转一边沿轴线向旁边移动。从外形上可以看出来,伸在圆筒上的曲臂装有一根针,针尖与圆筒表面接触,而在针的上面安装一个喇叭。在喇叭的端部装有金属薄膜,针就装在薄膜上。
  科劳迪和研究人员一起来到爱迪生身边,询问爱迪生这台机器究竟是干什么用的。爱迪生若无其事地说:“这台机器是说话的。”大家以为爱迪在开玩笑,都笑了起来。
  然而,这时的爱迪生却表情严肃,只见他一本正经地把一张锡箔绕在圆筒上,把喇叭上的针接触在锡箔上,然后边摇手柄边对着喇叭说话:“玛丽抱着羊羔,羊羔的毛像雪一样白……”原来,爱迪生在对着喇叭朗诵童话。
  这时,声音的振动传到喇叭端部的金属薄膜上,使薄膜产生相应的振动,于是装在薄膜上的针就在锡箔的表面不断划出深浅不同的沟纹。
  爱迪生朗诵完童话后,就把机器上的针放回原处,又摇动起手柄。于是,奇迹便出现了,机器用爱迪生的声音说起话来:“玛丽抱着羊羔,……”科劳迪和观看的人都非常惊奇,觉得爱迪生好像是在变戏法似的,并称这台机器为留声机。
  爱迪生当然也非常兴奋,他把这台机器带到纽约的报社进行实验表演。报社的人们也很惊奇,并立即作了报道。这样,爱迪生发明留声机的消息很快便传遍世界各地。
  实际上,爱迪生发明的留声机还很粗糙,有许多地方需要改进。例如,圆筒上贴的锡箔用过五六次之后,发出的声音就变小了,必须重新更换。
  起初,人们对留声机还觉得挺新鲜,时间一长就不怎么感兴趣了。再加上那时爱迪生正忙于研究试验电灯,无暇顾及留声机,结果他辛辛苦苦发明的留声机,就这样被打入冷宫9年。
  直到1887年,爱迪生又回过头来改进留声机。费了一番周折,总算制成了第二台机器。这台经过改进的机器,比第一台在性能上好多了。原来圆筒上贴的锡箔,已由坚硬的焊锡涂层所取代,而针已改用蓝宝石唱针。同时还将针尖磨成圆形,以防止针在锡管沟纹中滑动时不致于划伤沟纹。另外,手摇把也被淘汰了,采用电池带动的马达或发条转动。更引人注意的是,在录音的锡管上镀一层厚厚的金属膜,再把金属膜剥离下来作为铸型,就可以用来大量复制录有声波波纹的锡管。这些改进,使爱迪生发明的留声机已和后来的留声机很相近了。
  就在爱迪生发明留声机的同时,还有一些人也在热心研究留声机。其中最著名的就是电话发明人贝尔。
  贝尔发明了电话,法国政府授予他1万美元奖金。他有了这笔钱,就决定投资进行留声机的研究。
  贝尔和化学家奇切斯特·贝尔以及制作乐器的名师廷特合作,从 1880年开始,积极研制留声机。他们认为,爱迪生的第一台留声机把声波刻在锡箔上,效果不好。因此,贝尔和他的伙伴们在声音的再生方面进行了苦心钻研,并在1885年制成了用锡管而不用锡箔的留声机。这在时间上比爱迪生的第二台留声机还早。可以说,锡管式留声机的发明人不是爱迪生而是贝尔及其合作伙伴。然而,贝尔的不足之处是,他们未像爱迪生那样考虑到录音锡管的复制问题。
  值得提及的是,那时还有一个名叫贝利纳的德国人,也在研究留声机。他于1888年研制成留声机。这种留声机的唱针是按声波波纹左右滑动的,而爱迪生和贝尔的留声机唱针,是上下运动的,即声音随波纹的深浅而变化。
  爱迪生虽然研制成复制用的金属膜,但是还存在不少问题。真正解决唱片复制问题的是贝利纳。他在机械巧匠约翰逊的帮助下,研制成功新的唱片复制方法。这就是利用硬质橡胶和紫胶树脂材料生产唱片。美国胜利留声机公司于1899年制成了这种唱片。
  爱迪生不甘落后,他的公司和贝尔的公司携手建立了唱片公司,与贝利纳和其他留声机唱片公司进行竞争。他们很快就生产出了用石蜡制成的圆筒形唱盘。
  当时的留声机价格昂贵,一般家庭买不起,因此许多餐厅等处设置了一种投入一枚硬币即可自动放两分钟音乐的自动唱机。
  密纹唱片
  本世纪30年代初,有个美国人叫彼得·戈德马克,是个钢琴手,又是个大提琴手,在音乐方面有很高的修养。
  有一次,在音乐晚会上,他正在欣赏唱片放出的著名作曲家勃拉姆斯的曲子,完全被那动人心弦的旋律所陶醉,微闭双目,点头合着节拍……突然,留声机发出了“卡塔”一声,乐曲戛然而止。他像从梦中惊醒,睁大了眼睛,茫茫然不知所措。接着,他感慨地说:“这是在音乐演奏半截时发出的人们有史以来发明的最糟糕的声音。”这位颇有音乐天赋的演奏家继续发表感想:
  “有人赶紧跑过去换唱片,但是听众的情绪已经被破坏了。正是在此时此地我明白了自己必须制止这类事情再发生。”于是,他就着手去发明一种放音时间长而中途不更换的唱片。
  当时,彼得正在为哥伦比亚广播公司研究彩色电视系统。因此,他只能利用业余时间来研制这种新唱片。尽管他是忙里偷闲,进行研究试验,但越忙他越是坚持不懈,从不知难而退。正如他的同事、诺贝尔奖金获得者丹尼斯·加伯所说:“彼得发明东西就像吃饭那样平常。他最愉快的事情,就是被某个思想纠缠上以后,摆弄他的线路直至凌晨3点。彼得常说, ‘发奋是发明之母,而坚韧是发明之父。’”
  经过反复研究试验,他认为要使唱片的放音时间长,最好的办法是增加唱片的音槽密度,即采用密纹唱片。但是,当时的唱片多是使用酚醛树脂制成的,不适于印制更细密的音槽。
  后来,彼得在哥伦比亚公司集中力量研究这种密纹唱片。他通过分析比较,选用聚氯乙烯树脂制作新唱片。由于这种新材料的性能好,加上彼得进行不断的改进,终于在1931年研制成功了密纹唱片。
  与过去每分钟78转的普通唱片相比,密纹唱片转速为每分钟33.5转,纹道 (音槽)密度增至每英寸(2.54厘米)224至300道或更多。因此,一面唱片可以放音一个小时以上。密纹唱片不仅纹道密度大,转速慢,而旦纹道细,因而一张唱片的录音比普通唱片长6倍。
  在第二次世界大战期间,美军为了向德军广播,曾下大力研究唱片,从而促使密纹唱片得到进一步发展。
  幻灯机
  17世纪中叶,欧洲一些国家的传教士在传教时,一边讲一边用画来表现上帝、天使和基督的故事,但当时只有画册,不能同时给许多人看。于是,就有人想发明一种机器来解决这个难题。
  那时,有个德国传教士想利用凸透镜制造这种机器,把画面放映在墙上。因为早在1610年,意大利科学家伽利略就用透镜制成了望远镜,看到了月亮上的神奇景象。这位传教士就想,既然用透镜制成的望远镜能把远在天上的月亮看得清清楚楚,那么自然也能将图画放大了。在这种想法支持下,他就开始了研制试验工作。
  他制作了一个方形木箱,在箱子前面开孔处装有圆筒,而圆筒上镶着凸透镜。在凸透镜的后面开有切槽,用来插入透明画片。由于画片上的图像是倒映在墙上,所以必须把画片倒插在槽内。在木箱内点着蜡烛,是照射画片用的光源。另外,在木箱上面还装有抽气烟筒,用来消除蜡烛点燃时产生的气体。这样,一个用来往墙上放映画片的机器就制成了,传教士自然是很高兴了,并准备在传教时试用。
  研制成功机器的第二天晚上,信徒们很早就坐在漆黑的房间里,等待着传教士传教。听说传教时还要使用什么机器,来的人很多,屋子里坐得满满的。不多一会儿,传教士开始给信徒们讲话了,正在他讲基督的故事时,突然在墙壁上出现了基督的画面,信徒们异常惊奇,好像基督来到了他们中间。大家你看看我,我看看你,不知道是怎么回事儿。有的人就说,这是传教士使用的幻术魔法。于是,人们就把带有灯 (实际上是点的蜡烛)的箱形机器叫做“幻灯”,也有的称为“魔灯”。
  这种幻灯机,最初是在传教士保密的情况下在传教中使用的,人们觉得它很新奇,并不知道为什么能映出画来。不久,一般人也知道了其中的奥秘,便开始将它用于普通讲课、讲演,有的还将它作为家庭玩具。不过,这时的幻灯机光源已从蜡烛变成煤油灯,不久变为汽灯,后来又改用电灯。这样,放映出的画面比以前明亮多了。但是,人们为了进一步提高画面亮度,又在光源的后面安装了凹面反射镜,将光线集聚起来,像探照灯的强光那样。在光源增大后,机箱的温度也随之升高,有发生火灾的危险。因此,又将木箱改为铁箱,还改进了冷却用的排气装置。
  幻灯机开始用的是手工画的幻灯片。从 19世纪中叶起,随着照相术的发展,人们已能在玻璃板上照相制版。因此,使用照相版的幻灯机便随之流行起来。
  测谎器的使用
  从很早的时候起,人们为了辨别一个人讲的话是真还是假,就想出了一些特殊的办法。比如,阿拉伯半岛的贝督因人在判定两个说法互相矛盾的证人谁真谁假时,就让他们用舌头舔一块烧红的铁,并认为舌头被烧伤了的就是撒谎的人。在古代的英国,如果受审的人不能吞下用面包和乳酪做成的“试验片”,他就是有罪的。据说这种作法的根据是:撒谎的人会由于恐惧而产生一种特殊的生理反应,如喉部的肌肉收缩,因而吞东西困难;抑制唾液分泌,因而使口腔和舌头极为干燥等。人们认为,如果能准确地测出这些变化,不仅可以判明一个人是无辜的还是有罪的,而且还能估计出他讲的话有多少是事实,多少是谎话。
  最早出现的科学测谎仪器是意大利犯罪学家朗布罗索在 1895年发明的。这种方法的依据是脉搏次数和血压的增加。1914年,贝努西对测谎方法作了进一步研究,他把嫌疑犯的呼吸次数当成有罪或无罪的另一个证据。3年之后,马斯顿利用心脏收缩的血压进行了研究。1921年,美国拉森用多种波动描记器来记录若干种人体反应。这种仪器利用血压、脉率和呼吸次数来测谎。1935年,芝加哥犯罪探测科学实验室的基勒,用一种多种波动描记器在法庭上进行了首次测试,结果发现有两个被告是有罪的。
  测谎器的基本原理,是企图通过人们在犯罪和恐惧时产生的生理反应,如唾液分泌、心率、呼吸、体表温度这些在自主神经系统控制下的变化,来测定其感情的反应。被测的人可以通过手铐和称为呼吸描记器的软管子联到电流记录器上,也可以联到其他的灵敏装置上,通过这些装置把波动记录在由一台微型的同步电动机带动的记录纸上。最重要的是被测的人要背向仪器比较自然地坐着,以防止生物反馈。
  晶体管的诞生
  晶体管是在人们对半导体材料进行深入研究的基础上发明的。半导体材料是导电性介于金属和绝缘体之间的材料,一般是固体,比如锗和硅等。半导体中杂质的含量和外界条件 (如温度和光照)的改变会引起导电性能发生很大变化。半导体材料之间,或者半导体和某些金属材料之间相接触的地方,具有单向导电的性能,和二极电子管的性能相像。
  1928年,有人提议用半导体材料制作和电子管功能差不多的晶体管。但一方面由于当时还缺少研究半导体电子特性的固体物理学知识;另一方面由于按温度、压力、化学组成等宏观概念产生的半导体材料在微观结构上是混乱的,没有规律,它的电子性能具有很大的偶然性,因此晶体管没有研制成功。
  随着研究分子、原子和电子状态的固体物理学的发展,随着晶体生长理论和生长技术的发展,高纯度的晶体锗生产出来了,这就给晶体管的研制创造了条件。
  美国贝尔研究所的巴丁、肖克利、布拉顿等人合作研制成功了晶体管。巴丁原是大学教授,担任贝尔研究所所长,研究半导体理论,1947年他提出关于结晶表面的理论。布拉顿是实验物理学家,他对半导体表面进行实验研究,发展了半导体单晶的精制、成长等有关技术。巴丁和布拉顿两人,一个是理论家,一个是实验大师。1948年他们合作研制成功第一个点接触型晶体管。肖克利从1936年开始进行关于固体物理学、金属学、电子学等基础理论研究。从1945年起在贝尔研究所从事半导体理论研究,1949年他提出了P—N结理论(关于晶体中由于掺入杂质的不同所形成的 P型和 N型两种导电类型区域的理论)。不久,贝尔研究所研制成功第一个结型晶体三级管。由于研制成功晶体管,他们三人获得1956年诺贝尔物理奖。
  晶体管最初采用锗晶体做原料,后来由于硅的提纯和加工技术的发展,硅晶体比锗晶体的性能优越得多,因此硅晶体管取代了锗晶体管。晶体管具有小型、重量轻、性能可靠、省电等优点,到50年代末和60年代初,晶体管逐渐代替了电子管。
  助听器
  历史上最大的助听器,无疑是伦敦赖因公司于1819年为葡萄牙国王约翰六世研制的助听器。朝臣们跪着向空心扶手端部的狮子嘴巴说话,声音进入共鸣箱,再通过一根管子进入国王的耳中。现在已有小到五分之一英两重的助听器。
  最初,人们把手握成杯状置于耳后以增大对声音的接收面积,就像狗竖起耳朵一样。动物角也许是最早的助听器。后来,在椅子和椅子之间安上管子来传送声音,防止其消散。维多利亚女王时代的人们曾生产出各种假茶壶和假花瓶,其中有一定的积水面积,以便通过管子把讲的话传给耳聋的客人。但是,耳聋的人希望有能够戴的助听器。于是发明家为聋子发明了助听帽、助听手杖和安在胡子下面的接收器,所有这些助听器都有管子通向耳朵。他们还为耳聋的妻子制出羽毛助听帽,将接收器伪装成冕状头饰、扇子和可收口的女用网格拎包。对于那些不那么害羞的人来说,还有雕花的银助听器。另外的一种办法是用牙咬着的弧形扇,扇子收集的声音通过扇骨传进耳中。
  当贝尔努力发明一种助听器时,他发明了电话,促进了科学的发展。电话的原理可用来研制助听器。炭精传声器将声音变成电压,电压被放大,然后再转变成声音。但是电池是个麻烦问题。1923年,马可尼公司研制出了电子管控制的助听器,它是装在一个重16磅的盖子里的。在本世纪30年代,电子管的小型化,使电子助听器可以做得像盒式照相机那么大,重4磅。这样大的助听器能戴吗?还大了一点。
  宣称研制出了第一个重两磅半,真正能戴的电子助听器的人,是埃德温·史蒂文斯,他在1935年研制成功了声音放大器。
  发明电视机
  19世纪中叶,贝尔已经发明了电话。几十年后,电话已在世界上普及。好幻想的人又联想:“既能把声音传到远方,能不能把图像传到远处呢?”
  那还是在1873年,有一位叫史密斯的电气工程师,在工作中发现了一个怪现象。他看到不导电的“硒”遇见阳光能像电池一样产生出电来!当遮住射向硒的光线时,电也没有了。当时,人们只知道电池和发电机才能发电,可谁也没看到过光能发电!
  史密斯在报纸上发表了这一重大发现,引起了一些敏感的科学家的注意。其中有一位叫肯阿里的美国工程师在两块金属板中间夹上硒做成一个特殊装置。将它放在阳光下,果然从金属板上得到微弱电流,作用简直跟当时已普及的电池一样。于是肯阿里称它们为“光电池”,它能把光变成电。不过这电流太小了,一时还派不上什么用场。
  光电池在强光照射下产生强电流,在弱光照射下产生弱电流。多么像贝尔发明的能随声音的大小而使电流变化的电话啊!于是肯阿里联想到:既然电话能传送声音,光电池能不能传送图画呢?
  我们如把报纸上的照片放在显微镜下观察,可以发现图画是由无数黑白相间的点排列而成,有些地方稀一些,有些地方密一些。所以一张黑白照片,实际上可看成黑点和白点的组合,构成不同的明暗和色调。我们可以把图像分解成许多小单元,这些小单元被称为“像素”,每个像素发出的光强弱不一。
  肯阿里把报上发表的照片用黑白小点组成图;同时又把许多硒的小颗粒密集地排列在一块板上,另外还做了一个用小灯泡密集排列的装置。每个小点和小灯之间一个对着一个用电线连接起来。他设想:黑白小点组成的图放在硒板前用灯光照射,由于硒对光的感应,黑点的地方接受的光比较弱,与之相连的硒粒发出弱的电流;而白点的地方则发出强的电流,这样硒粒产生的强弱电流通过电线传到装置上的各个小灯。他认为一幅由明暗灯光组成的图画就会出现。
  设计原理是对的,但实际上根本实现不了。硒产生的电流那么小,又怎能使电灯发光呢?再说一张底片分割成无数小部分,又要一对对地用几万根甚至更多的导线联接起来,在技术上也做不到。
  10年后,波兰人尼布可也用类似想法做着新的实验。他把密布小孔的网板,在景物前旋转,使光从小孔中通过,当光射到硒粒上,随着光的强弱而产生不同大小的电流,这电流随着电线传到远处,使在远处连接的许多小灯发光。尼布可用同样的一个布满极密小孔的网板以同样的速度在发光的小灯泡前旋转。小灯泡发出的光通过网板小孔射到白纸上,一幅和发送部分一样的图和景或许就被放映出来。
  尼布可连续干了3年,终因光电池产生的电流太弱而遭到失败。难道传播活动图像就真不能实现吗?
  1912年,德国人耶斯塔和盖特发明了“光电管”。光电管能根据光的强度转换成不同强度的电流信号,比之于光电池,光电管的效能大多了。而后,美国的福雷斯特发明了三极管,三极管能把微弱信号放大许多倍。这样原来因电流太弱而不可能实现的传送活动图画的目标有了实现的可能。
  科学研究工作就如搭积木一样。你垒一块,我垒一块,就这样一幢美丽的大厦在他们的共同努力下,一天高似一天……
  首先使电视发送和接收成为现实的是一个英国人——贝德。
  贝德于1888年生于苏格兰。从小就有着丰富的想象力,成年后是一个出色的工程师。当时很多著名的科学家都在为发送和接收图像作着努力,但谁也没成功。贝德也投入了这场试图传播图像的比赛中。贝德想:既然无线电波能够实现远距离发送和接收,那么发送图像也应该是可能的。
  贝德的设想是将一束光照射到照片上,并移动光束照遍照片的各个部位并反射到硒板上。那么硒板上的感光便会随着图像的明暗变化而产生各种强度不同的电流。这一过程称为图像的“扫描”。然后电流便被输送给发射机,由发射机用无线电波发射出去。再由接收机接收,并把电波转换成明暗不同的图像。但这样的图像是静止的,而电视需要的却是活动图像。那么怎样才能得到活动图像呢?我们知道电影实际上也是一幅一幅的静止的图像,但是一张紧接一张,速度极快使人感觉不到图像之间有任何间隔,因而看到的是一个活动的完整画面。电视也采用了这一方法,但要复杂得多。没有实验经费,只好从废物堆里觅来种种代用品。失败接踵而来,长期的饥饿劳累,使他贫病交加。为了给他的发明寻找经济上的支持人,他想通过报纸宣传他的发明。然而当时的报纸业老板,既听不懂贝德的理论,又嫌他穿得如此破旧,将他视为疯子。在几次拒绝了贝德的请求之后,干脆吩咐门卫,不准这个“疯子”进门。
  百折不挠的贝德并没放弃自己的理想,他在自己的卧室中坚持着试验。他克服了许多难以想象的困难,连续经过几年的努力,终于获得了成功。
  1925年10月2日,贝德在室内安了个新装置,他拨动电钮,一下子图像清晰地显现出来了!他兴奋得一跃而起,冲进楼下商店拉来一个小伙计,几分钟后,“魔镜”里见到了小伙的脸——这是电视播送的第一张脸。
  1931年,贝德在大剧院进行公开电视试验。他选择了转播赛马比赛。这也是电视历史上首次的“实况转播”吧!
  赛马是当时英国人最喜爱的娱乐活动。当人们在距赛马场23公里的伦敦大剧场里亲眼看到赛马场上的精彩表演时,都情绪激昂地站立起来。连续不断的鼓掌使贝德一次又一次地向观众鞠躬致谢。电视发送和接收成功了。
  贝德创造的电视在今天看来显得有点原始,放映出的图像模糊不清。原因是贝德采用了机械扫描方式。
  1929年,俄国的罗辛教授提出利用阴极射线管的电子扫描方式。用阴极射线射出的电子光束在荧光屏上“描绘”画面。电子枪发射一束聚焦了的极细的电子束依一定顺序一行行地依次打在屏上,我们看到的电视就是电于扫描高速地重复不断地进行所产生的结果。
  从原理到实施又要克服许多技术上的困难,这一任务又落在移居美国的俄国博士兹窝利金身上。他开始在美国西屋电器公司实验室工作。1928年他发明制造了用于传送电视影像的光电管——光电摄像管。他和另一发明电视显像管的美国工程师范斯瓦斯合作,实现了以电子扫描方式的电视发送和传播。
  1935年,为了公开试验兹窝利金博士的电视研究,在美国最高建筑物纽约帝国大厦设立了电视台。
  1936年,电视台成功地把电视节目送到70公里以外的地方。后因为第二次世界大战,试验中断。直到战后的1946年,美国人罗斯·威玛发明了高灵敏度的摄像管,日本人八木教授又解决了家用电视机的接收天线的问题,一些发达国家相继建立超短波转播站,终于使电视迅速普及开来。
  今日电视技术的发展日新月异,人们根据不同需要制出各式各样的电视。商店里供应的电视机琳琅满目,有的屏幕大到54英寸、有的却只有一本连环画那么大小,可供旅游时随身携带,还有可像画一样悬挂在墙上的薄电视……
  在车站、广场、体育场所中则矗立起“顶天立地”的超大屏幕电视;却也有小到可带在手腕上的手表型超微型电视机。
  现代新电视视角都很大,你从屏前哪个角度都能看清楚画面。
  还制出了可同时播放六个小画面、一个大画面的电视。你觉着哪个精彩,只需一按电钮,在屏幕上就能映出你喜爱的那个频道画面。真是美不胜收啊!
  电视不仅丰富了人们的文化生活,而且广泛用于数学、工业生产、军事国防等各个方面。电视已经成为人们生活中不可缺少的一部分。
  五彩缤纷的灯
  白炽灯的改进
  1882年初春,第一批实用的白炽灯终于问世了,它给千家万户带来了光明和欢乐。白炽灯是爱迪生对人类最辉煌的贡献之一。
  但爱迪生发明的白炽灯也有缺点,就是使用寿命较短,这是因为他用的灯丝是炭化竹丝,容易氧化而烧断。
  有没有更好的材料可作灯丝呢?科学家们又开始进行新的试验。1910年,美国通用电气公司的克利基用钨丝代替炭化竹丝作灯丝,发现使用寿命大大提高,可用上千小时,这样就发明了钨丝白炽灯。钨丝不仅能耐高温,而且亮度大大提高,因此很爱大众的欢迎。通用电气公司立即申请了钨丝灯泡的专利,并将其命名为“玛兹”(玛兹是希腊神话中的神),从1910年开始向全世界出售。这种钨丝白炽灯从那时起直到现在一直兢兢业业地为人类服务。
  但是,新的问题又出现了,钨丝灯泡也有缺点,因为金属钨达到一定高温就开始蒸发,从而使玻璃泡变黑,影响了亮度。
  为了解决这个问题,通用电气公司的另一位研究人员兰得米阿想出一个新办法。他不使电灯的玻璃泡成为真空,而是在抽净空气后,给灯泡充以与钨不发生化学反应的惰性气体,如氮气和氩气等,这样就可抑制钨的蒸发,效果很好,很快又申请了专利,并于1913年开始生产这种充气灯泡。
  此后,有一位名叫弗里德里奇的美国人,尝试向灯泡里充进碘、溴等卤族元素。这类元素有一种本领,能够把蒸发到灯泡壁上的钨 (充了惰性气体后钨仍要蒸发,不过比较慢而已)重新“揪”回来,送回到钨丝上。这样不仅提高了白炽灯的发光效率,还延长了白炽灯的使用寿命。1959年第一盏卤钨灯造出了,从而揭开了白炽灯发展史上新的一页。
  荧光灯的诞生
  白炽灯较之以往的蜡烛、煤油灯当然具有无法比拟的优点,但人们并不满足,因为它还有很大的缺点。这种电灯是利用电流流过灯丝产生高热来发光的,在由热转换为光的过程中,热量有很大的浪费。如果说原始的灯,是灯与火不能分开;那么白炽灯则是灯与热难分难舍。科学家们想:能不能把热与光分开呢?
  1902年,美国的休伊特研制成功了水银灯。水银灯是在真空的玻璃管中注入少许的水银蒸气,在灯管的两端引出两个电极,加上电压后,使玻璃管中产生放电电弧而发光。由于它是靠气体的激发而发光的,所以也叫做气体放电灯。水银灯发出的光极强,光谱也接近太阳光。它的强光,适合于电影的拍摄,一些摄影棚往往都用水银灯照明。
  但水银灯也有缺点,就是有很强的紫外线,在室内长期使用会影响人的身体健康,特别是损害人的视力。于是人们又开始考虑,有没有办法不使其产生紫外线呢?
  经过种种试验和摸索,终于找到一种荧光物质,如用光线照射它,它也会发光,而所发出的光线的波长比照射它的光线的波长要长。紫外线波长比一般可见光线的波长要短。这样一来,如果使用紫外线照射荧光物质,那么荧光物质所发出的光线,其波长就比紫外线的波长要长,即不再是紫外线了。如果在水银灯玻璃管内壁涂上荧光物质,那么水银灯发射的损害人视力的紫外线,就会被转换成像白炽灯那样的光线了。这种灯的光色接近日光,因此通常把荧光灯称为“日光灯”,它的发光效率要比白炽灯高出好几倍,而且使用寿命也比白炽灯长,一般可达四五千小时。
  霓虹灯与小太阳
  既然水银蒸气通电后能发光,那么其他的气体行不行呢?科学家们进行了各种试验,在抽空的玻璃管内充以各种气体,然后加上电压,看看有什么结果?结果发现:充氮气的会发黄色光,充氢气的会发粉红色的光,充二氧化碳的会发白色的光,充氩气的会发淡紫色的光,充氖气的会发桔红色的光,若将氖气与水银蒸气混合,则会发绿色的光,啊!这不是五彩缤纷的霓虹灯吗?是的,热闹的上海南京路、淮海路的商业街上装饰着的各种鲜艳夺目的装饰灯,正是这种充了各种不同气体的霓虹灯。
  气体放电灯还有很多:若充以钠蒸气,则加电压后的钠蒸气会激发出强烈的黄光,它的发光效率很高,用作街道照明非常适合。你不妨留意一下,一些都市街道的照明灯现在差不多改成发黄光的钠灯。由于它发出的荧光穿透浓雾的能力强,所以也是船舰信号,港口、机场上的好光源。
  若在玻璃管里充以氙气,则发出的光同太阳光几乎接近,不仅光色好,且光效高,光强大,故又称为“小太阳”,可以用于广场大面积的照明。一些体育场地的照明多用它。在场地的四周安装上几十盏“小太阳”,就如同白昼,因此即使在夜晚,照样可以进行足球比赛。据测算,一盏5万瓦的氙灯所发出的光相当于1000盏100瓦的日光灯,或者相当于90盏400瓦的高压汞灯。
  未来的光源
  自从爱迪生发明白炽灯以来的百余年中,如上所述各种光源真是层出不穷,五花八门。但不管如何变化,都需电源,未来的灯又应是怎样的呢?
  现在有一种称为“原子灯”的已初露头角,这种灯不需电源,也不需外加燃料,却能自动发光,寿命可达几十年,真可谓是“长命灯”了。
  前面说过,荧光物质要能发光,必须要有其他光源照射,否则它就黯然失色了。怎样能使荧光长久不衰呢?人们发现有些放射性同位素在不断衰变的过程中,会发射出具有很大动能的射线,它能使荧光物质发光。如果把这种放射物质与荧光物质放在一起,利用放射性物质产生的射线来激发荧光物质,不就成了“永久”发光的灯吗?于是,一种新的光源——原子灯就诞生了。
  另外,有一种叫电致发光灯,它像一块熠熠生辉的发光板;一种叫半导体灯,其实是一个发光二极管,它能直接把电能变成光能,使固体材料发光,很有发展前途;还有一种化学发光灯,它利用物质的化学反应发出冷光,如同萤火虫一样,发光效率极高,前景十分美好。
  也许在不久的将来,这些新型光源就会出现在你的居室和书桌上,在你的口袋里也许会放上一个只有指头大小的原子灯手电筒呢!
  发明真空三极管
  1906年春天,美国纽约地方法院正在开庭审判一件离奇的案子。
  被告人是一个面容憔悴的青年,名字叫福雷斯特。法官戴着庄严的黑礼帽,用手高高举起一个里面有金属网的玻璃泡,他宣称有人控告被告人用这种“莫名其妙的玩意儿”四处行骗。而这个青年竭力辩解说,这个玻璃泡是他的新发明,它可以把远在大西洋彼岸传来的微弱的电磁波加以放大。
  这场官司持续的时间不长,却闹得满城风雨。无知的法官、好事的记者,谁都不会想到这个“莫名其妙的玩意儿”竟是本世纪的伟大发明之一,那个被告的青年后来竟会成为闻名世界的电子管发明家。
  福雷斯特于1873年8月出生在美国的伊利诺斯州。他的父亲是位教师,曾经是一所黑人学校的校长。由于当时美国的种族歧视还很严重,人们看不起黑人,也看不起接近黑人的白人。福雷斯特一家常受人家冷遇与白眼,其父生性刚直,不让他与其他白人孩子一起玩。因此,福雷斯特的童年是在狭窄的天地里度过的,这使他的性格有些孤独和怪僻。他回忆起自己的童年时代曾说:“我上学的时候老被人当做‘蠢孩子’看待。那时,我虽然读了不少书,但对于实际的事情,一点也不懂。”
  到了中学时代,他也没有显露出多少才华。用他自己的话说,是“学识既不丰富,也不善交际,而且文笔和口才又都那么笨拙。”总之,他是一个平平常常的少年。他的唯一爱好,是喜欢摆弄各种机器。他那时梦寐以求的,是当个机械技师。
  1896年,福雷斯特大学毕业。正在这时,马可尼在英国成功地进行无线电表演的消息传到了欧美大陆。有一天,福雷斯特从杂志上读到一篇介绍马可尼的文章,并附有马可尼的照片。照片上,马可尼端正地坐在实验台前,神情严肃,他的左边放着电磁波发射机,右边放着接收机。这篇文章给了福雷斯特很大的启发,他决定改变方向,研究无线电。
  1899年深秋,在美国举行盛大的国际快艇比赛。马可尼应邀来到美国,用他的无线电装置报道比赛实况。他在一艘船上,5小时内向海岸无线电站拍发了4000多字的消息,消息再从陆上电台用电报线传给《纽约先驱论坛报》,能这样迅速及时的报道,尚属首次,令美国的新闻记者们惊叹不止。
  马可尼在纽约期间,为了满足观众的好奇,又在岸上作了一次表演。福雷斯特早就盼望能亲眼看看马可尼的表演,所以闻讯后,天不亮就跑到码头上来等候了。等马可尼表演结束,福雷斯特拼命挤到前面,在收报机前面停下来,看了又看。他的不同寻常的神态引起了马可尼的注意,使福雷斯特有幸与马可尼相识。他就向马可尼请教无线电技术中的一些难题,马可尼都向他作了解答。他还谈起自己研究了几年都一无所获的苦恼,马可尼鼓励他说,也许是没有找到适当的研究课题。可马尼介绍自己的工作,正在努力提高接收机的灵敏度,其关键是革新现在用的金属屑检波器。但究竟应该怎么改,马可尼也没有成熟的意见。
  总之,马可尼的这一席话给福雷斯特留下了非常深刻的印象,原来改进金属屑检波器,就是当时无线电研究中一个急待解决的重大课题。在回家的路上,福雷斯特兴奋地想着:说不定我能够完成这个使命。
  这次观摩与谈话,对他后来的发明产生了深远的影响。
  就在马可尼离开美国不到两个月,福雷斯特辞去研究所的工作,在纽约泰晤士街租了一间破旧的小屋,全心全意地研究改进检波器。由于辞去了工作,没有了正常的收入来源,他的生活很困难,他只好节衣缩食,买一些最简陋的器材做检测电波的试验。为了维持生活,他白天常常去给富家子弟补习功课,有时到饭店去洗碗、扫地。一到夜里,他就沉浸在发明创造的乐趣之中。
  福雷斯特在坎坷的道路上探索了1年,但收获甚微,他的各种试验都失败了。可是,他并不灰心,继续进行试验。
  1900年一个隆冬的寒夜,福雷斯特又在灯下进行新的实验,屋里点的是煤气灯,实验装置也很粗糙。一个从旧货摊上买来的电键,两个自制的电瓶,再加上一个粗线圈,就构成了他的发射机。当他按动电键时,线圈就接通电源,发出火花,辐射出电磁波信号。在靠近他的另一端,有一个同电流计相连的金属屑检波器,就成了接收机。检波器里的金属屑,他已经换过好几种,但效果都不理想。
  此时福雷斯特一面接着电键,一面观察检波器的反应,他突然注意到头顶上的灯光一明一暗地在闪烁。开始,他以为是窗外刮风引起的。但再仔细观察,发现灯光明暗变化却很有节奏,而且与电键开关有关,按动电键,线圈发出火花,煤气灯的火焰马上变暗;相反,松开电键,火焰立即变亮。
  福雷斯特两眼盯着煤气灯,反复按着电键,观察火焰的变化,突然一个念头闪过:能不能利用这个现象来搞无线电检波呢?
  经过3年的不断试验,他终于发明了一种“气体检波器”,并于1903年在舰船无线电通信中试用,获得了相当的成功。但是,用火焰来检测无线电波的方法虽然新奇,却并非上策,因为要在每台接收机里装上火焰装置,用起来显然很不方便,而且检测效率也不高。后来,福雷斯特放弃了这个方法。
  虽然火焰检波的方法被放弃,但却成了福雷斯特通向成功的桥梁。他从火焰检波中得到启发,由此联想到:既然炽热的火焰能受电磁波影响,那么,炽热的灯丝是否也会有影响呢?因此他想到用“灯泡”来检测电磁波,由此找到了打开通向真理大门的金钥匙。
  正当福雷斯特研究用真空管检波的时候,有个朋友带给他意外的消息:英国的弗莱明博士发明了真空二极管!他急不可待地把刊登发明真空二极管消息的杂志找来阅读,这使他十分激动与羡慕。弗莱明的二极管同金属屑检波器比起来,确实前进了一大步,但只能做检波用,不能放大。福雷斯特看到了这点,他想试一试,打算再改进一下。
  于是他找到了一个灯泡厂技师帮忙,制作了几个真空管。其灯丝用白金丝,在灯丝附近又装了块金属屏。他把真空管装在无线电接收机上,代替老式的金属屑检波器,果然效果很好。然后他又在电子管里封进了第三个电极,这是一片不大的锡箔,位置在灯丝与屏极之间,初看起来,并无特殊之处,但是,正是这个不显眼的小电极,改变了无线电世界的面貌。他惊异地发现:在第三极上施加一个不大的信号,就可改变屏极电流的大小,而且变化规律同所加的信号一致。他马上意识到,这表明第三个电极对屏极电流有控制作用。这个发现非同寻常,因为只要屏极电流的变化比信号的变化大,就意味着信号被放大了,而这正是许多发明家梦寐以求的目标。
  但他并不急于公开他的发明,而是沉住气,毫不声张地继续进行试验。为了提高控制的灵敏度,他多次改变小锡箔在两极之间的位置,最后,他发现用金属丝代替小锡箔,效果最好,于是就用一根白金丝扭成网状,封装在灯丝和屏极之间,就这样世界上第一个真空三极管诞生了!由于控制极的形状像网栅,福雷斯特就把它称为“栅极”。它像一个非常非常灵敏的控制闸,按照施加信号的变化,有规律地改变着屏极电流的大小。由于屏极电流比栅极电流大得多,因此,微小电信号经过真空三极管就大了许多倍。
  像科技史上的许多发明一样,真空三极管获得社会承认,也经历了许多曲折。
  福雷斯特发明三极管后,因没有钱进一步做试验,就只好带着自己的发明去找几家大公司,想说服那些老板给他资助。由于他不修边幅,穿得破破烂烂,连走两家公司,结果连大门都不让他进,因为门卫怀疑他是个行为不轨的人。
  当他来到第三家公司时,也把他当做流浪汉,不准他进去。任凭他怎么解释,也无济于事。门卫甚至怀疑他是个江湖骗子,就去报告了经理。这个经理也是一个势利小人,不容分说,竟叫来了几个彪形大汉把他扭送到警察局。
  几天后,法院就开庭审判,这就出现了本文开头所叙述的那个场面。福雷斯特开始被控告是“公开行骗”,接着又告他“私设电台”。但他并不畏惧,相反,他机智地利用法庭这个公开的讲坛,大力宣传自己的发明。他充满信心地说:“历史必将证明,我发明了空中帝国的王冠。”福雷斯特说的
  “空中帝国”就是指无线电;“王冠”指的是真空三极管。
  经过他的申辩与斗争,他终于胜利了,法院无证据定他罪,最后宣判他无罪释放。这场官司倒使他出了名。1906年6月26日,他发明的真空三极管获得了美国专利,后人把这一天当作真空三极管的诞生日。
  福雷斯特首先把三极管用在无线电接收屏极检波电路中,使通信距离大大增加。不久,三极管又被用在电话增音机上,解决了贝尔电话公司当时正在设计的美国长途电话的关键问题。开始时由于真空度不够,管子寿命不长。到了 1910年,德国科学家发明了分子泵,可以把三极管的真空度抽得很高,使用寿命大大提高,因此三极管很快大批量生产,广泛应用。到 1918年,各种类型的无线电收发报机和电子设备都普遍采用了三极管。
  总之,三极管使无线电发生了根本的变革,日本的一位科技传记作家指出:“真空三极管的发明,像升起了一颗信号弹,使全世界科学家都争先恐后地朝这个方向去研究。因此,在一个不长的时期里,电子器件获得了惊人的发展。”从三极管发展到四极管、五极管、七极管、大功率发射管等,形成了一个庞大的电子器件家族。
  真空电子管的出现是电子科学技术史上一件划时代的大事,它不仅推动了无线电技术的迅猛发展,并奠定了近代电子工业的基础。正是有了电子管,在短短的20年里,远程无线电通信、无线电话、收音机、广播、电视、高频加热炉等才像雨后春笋般涌现出来,世界上第一台电子计算机也才能够制造出来。
  印刷电路的发明
  1944年,当第二次世界大战进入最后决战阶段的时候,德国法西斯为了作垂死挣扎,集中了400枚V—Ⅰ飞机式的导弹,向英国伦敦发动了第二次闪电战,妄图把伦敦城一举炸平。在这危急关头,盟军用带有印刷电路无线电“近发引信”的高射炮弹奇迹般地将大多数的空袭飞机击毁,使这座欧洲名城免受了毁灭性打击,并为最后击败法西斯创造了条件。
  “近发引信”是印刷电路的首次应用,它不同于“普通引信”。普通引信是依靠正确的瞄准击发,才能在适当的时刻引爆炸药;而印刷电路无线电近发引信只要攻击目标到达杀伤范围 (在100米之内)都会引爆炸药,因此后者大大提高了高射炮弹的命中率。
  近发引信在实战中所创的佳绩,说明了印刷电路的优越性,以致美国当局在1948年下令所有机载设备必须采用印刷电路。
  印刷电路这一重大发明是由保罗·艾斯勒发明创造的。但遗憾的是正像其他许多发明一样,一开始并未受到重视。1936年,满怀信心和希望的艾斯勒向普列赛公司展示了他精心制作的一个小型印刷电路收音机,但该公司的领导人不知是因为思想保守还是一时糊涂,竟然没有预见到印刷电路具有增强可靠性、生产简单、能使产品小型化以及能开创新产品和市场等优点,相反却嘲笑艾斯勒的发明是“妇人之见”。这次遭遇使艾斯勒深受打击,他不得不转入其他的创造研究活动。
  然而,他并未失去信心,在第二次世界大战爆发后,艾斯勒又回到他的印刷电路的研究中。他坚信这一发明将有助于打败希特勒德国法西斯。也许是天遂人愿,一个偶然的机会,一位美国军事人员发现了他的印刷电路,并很快地将这一成果报告了在华盛顿的美国标准局。经认真研究后,美国标准局决定将它应用到近发引信上。这样,这匹“千里马”终于遇上了“伯乐”,艾斯勒的发明有了用武之地。
  艾斯勒生于1930年, 23岁那年毕业于维也纳工学院,毕业后成为了一名电子工程师。不幸的是,受排犹 (犹太人)分子的迫害,他在奥地利无法找到工作,只好辗转来到南斯拉夫贝尔格莱德的HMV公司,从事铁路无线电接收和声音传送的抗干扰设备的研究开发工作。
  但由于经济困难,该公司又不得不中止了由该公司生产这种设备的合同,HMV公司付完费用之后,就中断了与艾斯勒的谈判,于是艾斯勒又一次丢掉了饭碗。
  艾斯勒只好又回到维也纳,在一家无线电周刊杂志当帮工,从此开始学习印刷技术,后来又得到了一份编辑职务的工作。在这个过程中,他熟悉了有关印刷制版方面的知识,为他以后发明印刷电路打下了基础。
  1934年,奥地利法西斯上台后,艾斯勒意识到不可能再继续留在奥地利,就打算前往美国或英国,可是在这两个国家并无朋友可提供帮助。于是他灵机一动,以他已有的两项专利发明——自动录音和立体电视,作为资本,得到了访问英国的邀请和签证。
  到了英国后,马可尼公司以250英镑买下他的立体电视的专利权。几个月,这笔微薄的资金已所剩无几了,陷入贫困境地的艾斯勒并不放弃他的创造工作。虽然他生活在一间狭小的房间里,会影响到他的实验工作,好在电子领域的工具和仪器都不庞大,而且价格较低廉。他的研究可以不受这些条件的限制。艾斯勒把全部精力都投入到电子线路板的研制中。他将自己在印刷工作中学到的技术,与他的电子学知识结合起来,将原来用导线连接电子元件(如电阻、电容、电感、开关等元件)改为印制在绝缘板上的电路,使线路结构紧凑合理、质量得到保证。
  在试制中碰到问题,他就经常去大英博物馆阅览室查阅资料,充实自己的印刷知识。经过反复试验,终于完成了印刷电路的发明。
  录像机的发明
  录像机在1959年之前还鲜为人知,直到1959年,美国总统尼克松访苏
  (现改为独联体),在美苏两国首脑会谈时,尼克松与当时苏联共产党第一书记赫鲁晓夫之间进行了一场著名的“厨房辩论”。美国的技术人员在对方不知不觉的情况下对这个唇枪舌剑的场面作了世界上第一个新闻录像。几分钟之后,当赫鲁晓夫看到重放的录像时不禁大吃一惊。
  那录像磁带随即被装入手提箱飞运回美国,并用电视迅速向全国播放,尼克松和赫鲁晓夫成了世界上最早的两位录像明星。从此以后,录像机引起了公众的兴趣和注意。
  当电视机诞生以后,人们就萌生了把电视信号记录下来以便以后重放的念头,犹如录音机把声音录下来以便日后重放一样。1928年10月一个叫芬奇·巴耶特的英国人申请了唱片式录像的专利,并生产了试用唱片,于 30年代中公开销售过,那时的售价相当于35便士。制作时,巴耶特先把30线的扫描图像通过特殊的机构转变为间频信号,然后像制作唱片一样,在录像唱片上刻出螺旋沟槽。这种录像唱片必须跟电视机和电唱机(包括拾音设备)一起才能使用。
  正当人们对巴耶特的系统感到新奇的时候,旅居英国的俄国科学家日乔鲁夫提出了以电磁方式记录电视信号方式。1927年1月,他设想利用已由波兰人波尔逊发明的钢丝录音技术不仅可以记录声音,而且还可记录图像。尽管日乔鲁夫得到英国授予的有关这种设想的专利,但没有付诸实施。由于他无力支付一年一度的专利年费,因此他的专利权不久也终止了。
  机械式的录像唱片,只能记录30线的扫描图像,但以1936年黑白电视机的线数已发展到405线,以后彩色电视更发展到625线,这对机械式录像法是致命打击,因为用机械方式的扫描无法达到这么快的速度。
  人们设法用电子扫描的办法制造电视录像设备。在50年代中期,英国广播公司制成了电子录像机,它有两个大磁带盘,磁带以每秒5米的惊人速度通过一个静止的录像磁头。尽管可以现场重放,但显得十分笨拙与不实用,因此在做成功之前就已经过时了。不久它就出现在伦敦街头的电子处理品商摊上,以零件出售,从而结束了它的生命。
  1956年4月,美国的安潘克斯在国家广播协会的内部展出了第一台实验性的磁带录像机,它在技术上有新的突破。磁带宽50毫米,走带速度减慢为每秒39.7厘米,磁带通过一个带有四个磁头的磁鼓,该鼓形盘每秒的转速为250转,使四个磁头都能斜向扫描磁带整个宽度,留下一系列磁迹。这里使用的是调频录像而不是早先的调幅录像法。安潘克斯公司的第一台录像机价值7.5万美元,体积比一辆小汽车还大。
  录像机是家用电器中结构最精密、最复杂的。例如,在装配录像机的心脏,即鼓形盘时,其误差不能超过一根头发丝的宽度。现在的磁带录像机,机内共有2500个分立元件,5500多个接线端,其中包括30块集成电路,整个机器所用的元件相当于4万个晶体管。如果不用集成电路的话,需要4平方米的普通印刷线路板才行。相比之下,彩色电视机就简单多了,它只有350个组件。在录放彩色电视节目的时候,如果走带速度以每秒2厘米计,它的信息量就相当于200台录音机或者1000部电话同时工作时的总信息量。难怪有人把录像机称为“家庭中最复杂的机器”。
  静电复印机的出现
  前不久,曾报导国外有人用复印机复印美元。若不用机器鉴别,一般人根本无法识别真假,真可谓达到了乱真的地步。
  今日世界上,复印一些重要的参考资料、文件、证件已是十分平常的事,复印机是当今办公现代化的标志。只要将文件在复印机上滚一下,几秒钟,就能得到与原件一模一样的复印件,既迅速又方便。这样美妙的机器是谁发明的呢?它的原理又是什么?为此先讲一个民间流传下来的故事。
  民间流传着这样一个故事。
  在历史上楚汉之争中,百战百胜的楚霸王项羽却在垓下一战中遭刘邦军队伏击而几乎全军覆灭。他带着几个剩下的亲信杀出重重包围而逃至乌江边。项羽凭借着盖世无双的武艺,还妄图重整旗鼓,卷土重来。他正骑着马在想着,忽然发现乌江边矗立着一座石碑。石碑上赫然写着“霸王自刎乌江”六个大字,项羽一惊!转而一想,该又是刘邦军队所刻吧!不料,仔细一看,字迹竟是无数蚂蚁组成。这位勇猛有余而智谋不足的霸王见此非雕刻所为而是蚂蚁爬出的字迹,竟不作多想,认为这是上天的意志。于是长叹一声,拔剑自刎了。
  蚂蚁怎么会写字呢?其实这正是汉高祖刘邦的诡计,他派人用蜂蜜在石碑上涂了这个六个字,蚂蚁嗅到蜂蜜味,纷纷爬来吸吮,于是爬满了涂蜜的地方,呈现出这六个醒目且要命的大字。
  讲述这个小故事,是为了搞清静电复印的原理。复印机主要部件是硒鼓。该鼓上涂抹的硒能在黑暗中留住电荷,一遇光又能放走电荷。将要复印的字迹、符号、图表等通过光照到硒鼓上,就能将这些内容如同在石碑上先涂上蜂蜜一样“写”在硒鼓上。受光照而又无字的部分放走了电荷,有字的部分留住了正电荷。当然“蚂蚁”不爬上还是看不见这些字的。那“蚂蚁”又是谁呢?是墨粉,我们设法让带负电的墨粉吸到硒鼓的有字部分上。硒鼓转动时,让带正电的白纸通过,墨粉被吸到纸上,经过高温或红外线照射,让它熔化,渗入纸中。这样便形成牢固、耐久的字迹和图表。
  50年前,有位美国工程师切斯特·卡尔森。他发现常需要多份同样的信函、公文送交各个部门,让秘书抄写、打字、易出差错,份数一多又耽误了工作。这种不便与麻烦使他感到要创造一种新机器来改变这种被动局面。卡尔森潜心研究,经过长时期的探索,他成功地绘制出复印机的设计图。但没有哪个企业肯帮助他进行一项他们闻所未闻的发明,卡尔森只好在自己家中的厨房和浴室里进行研究。他白天上班,晚上废寝忘食地研究制造复印机,经常搞到第二天凌晨,啃了啃冷面包又匆匆赶去上班。在最后阶段,筋疲力尽的卡尔森只能请了一名叫奥托·科尼的助手。科尼是一个勤奋的青年,他协助卡尔森日以继夜地苦拼了三周,终于制出了第一台复印机,并完成了第一张复印图片。这张小小的仅5厘米见方的小图片印着:“Artoria 10—22—38”。这小纸片今天成了珍贵文物,它记载了一个历史日期。1938年 10月22日诞生了历史上第一台复印机和印出了第一张复印图文。
  从发明静电复印机到正式投放市场,卡尔森足足搞了22年。直到1949年,卡尔森所在的哈格德公司生产出了静电5复印机。哈格德公司就是今天以复印机而闻名世界的施乐公司前身。施乐公司的英文名词 Xerox正是静电复印 Xerogra- phy中开始的几个字母。
  使复印机获得发展的是卡尔森的接班人——鲍勃·冈拉克。
  按卡尔森设计并制出的第一批平板复印机是笨重的。复印一张拷贝需要花费4分钟,印制复杂的图形常常让人无法辨认。那时一些企业都宁可雇用打字的女秘书而不肯购买价格昂贵的复印机。卡尔森是施乐公司的总设计师,他当然为产品打不开销路而烦恼。
  一天,他走进车间,看到有个年轻人正滔滔不绝地告诉周围工人,如何使用经他改进的一个复印装置。卡尔森一听,好聪明的设计呵!当即夸奖说:
  “你是一个发明家!”他亲切地问了年轻人姓名,知道他是刚进公司的大学生——鲍勃·冈拉克。
  卡尔森的鼓励增强了冈拉克的自信心。在此后的岁月里,冈拉克仅在静电复印机技术上就有过133项发明和改进。他作出的发明中最重要的是提高了复印速度,冈拉克从原来每4分钟印一张发展至今可以在一分钟内印上150张。冈拉克使复印机简单化。他认为“简单化是成功的关键!”冈拉克革除了复印机中不必要部分,使复印机可放在书桌上却又能印出一码宽的文件。
  卡尔森年纪已大,他向董事会推荐了当时仅 25岁的冈拉克。鲍勃·冈拉克替代了卡尔森,成了施乐公司的首席研究人员。
  由于冈拉克的努力,施乐公司的复印机成了世界上销路最广、应用最多的复印机。施乐几乎成了复印机的代名词。
  经过几代人的努力,复印机又进入了一个新时代。
  现代最新科学技术成果在复印机上得到应用。集成电路板块代替了复杂的晶体管线路;激光技术使复印更清晰精细;现代摄影、化学的最新技术使复印发展到几乎完美的地步。
  80年代出现了全色复印机,复印出的图画与最美丽的彩色照片无异。以至出现本文前面所说难以辨别的假钞票被复制出来。
  现代复印机能一次复印出世界地图;也能印制邮票那样的精致画面。现今市面上的一些假邮票就是被贩子用复印机造出的。
  复印机已不仅仅是办公用具,它在生产建设、科学研究中都发挥了越来越大的作用。
  电冰箱
  现在,到炎热的夏天,各种冷饮琳琅满目,棒冰、雪糕、刨冰、紫雪粒……应有尽有。回到家中,打开冰箱,开瓶冰镇汽水或可乐、雪碧之类,一饮而尽,真是使人透心凉。
  对于现代人来说,夏天吃根冰棍之类的事是再普通不过的事了。但是,在古代却只有帝王贵族才有资格享受这种奢侈品。据说在2000年前的大罗马帝国,冬天来到的时候,皇帝命令奴隶们将高山上的冰,分割成完整的一大块一大块,运回来放到很深的地窖里,整整齐齐地排列好,藏起来。当炎热夏天来临的时候,再把冰一块一块取出来,用来冰镇酒与牛奶,或者把冰掺在酒和牛奶里,用来款待客人和嘉宾。
  到了18世纪,欧洲发生了产业革命,许多城市人口激增,不得不到远处去运粮食与食品 (如牛肉、猪肉、家禽等),为了保证粮食和食品不变质,因此提出了食品冷藏运输的问题。同时,世界各国对羊毛的需求也不断增加,而澳大利亚和新西兰的养羊业十分发达,可是,成千上万头羊身上的羊毛被剪下后,剩下的羊肉怎么办?当地人口不多,根本吃不了,而远在地球的另一面——欧洲人却十分迫切的需要它。因此,也提出了一个问题,即这些容易腐烂的食品如何作长距离运输的问题。
  1626年,有位美国的著名哲学家弗兰西斯·培根曾经作过试验,把鸡肉埋在雪里,在很长时间内都不腐败变质。之后,一些科学家也作过同样试验,从那时起人们已经知道,食物腐烂的原因是由于人眼看不见的微生物在作怪。对付它们的办法之一就是冷冻,因此用冰来冷藏食品是一个好办法。
  1873年,制成了一艘用冰致冷的冷藏船,名字叫“诺福克”号。它从澳大利亚的墨尔本运了20吨冻羊肉到英国伦敦,消息传开,人们纷纷前来参观,想看个究竟,冷藏船到底能不能使羊肉不变质?
  待船舱打开,真使人大失所望——羊肉已经变质发臭了!原来当船从墨尔本出发,一定要跨越炎热赤道,才能抵达英国,船上的冰耐不住赤道的炎热很快化掉了,因此试图以冰作为冷藏手段的冷藏船的试验失败了。
  既然利用天然冰不能达到长期致冷,人们就另辟蹊径,开始研究制造人造冰的技术。
  1822年,英国物理学家法拉第发现了这样一个现象:气态的二氧化碳、氨气、氯气在加压的情况下,会变成液体,压力减少后又会恢复气体,而在这过程中伴随着吸热与放热。不久,德国化学家林德利用这个现象制成了冷冻机。他是利用氨来制冷。先给氨加压使其液化;再使它从小孔中射出,使其立即蒸发,在蒸发的过程中会吸收大量的热量,从而使周围环境的温度下降,这样就达到致冷的目的。然后利用压缩机再把蒸发了的氨重新压缩,使之液化,又开始下一个吸热致冷的循环过程。
  根据这个原理,1876年制成了名叫“罗萨姆”号的冷藏船,船上安装了一台以氨作致冷剂的致冷机,船仓里用盐水来冷却盘管。该船在澳大利亚悉尼港下水,待羊肉刚刚装进船仓,准备起航,不料由于盐水冷却盘管漏水,冷却系统失灵。结果盐水不仅污染了羊肉,而且因天气热,羊肉很快变质,冷藏船的试验再次失败。
  但是科学家们并不气馁,一方面分析原因,加以改进,另一方面继续试验。在1879年,终于又造了一艘名叫“斯特拉斯列文”号的冷藏船,再次从澳大利亚的悉尼港满载了40吨的牛羊肉向伦敦港进发。一路上跨过炎热的赤道,越过印度洋和红海,穿过苏伊士运河,经过地中海,终于在 1880年2月2日到达伦敦港口,行程几万里,历时几个月,当打开船舱时,人们发现牛羊肉仍然冻成一块块硬梆梆的肉冰,一点没有变质。
  这就是世界上第一艘可供实用的冷藏船,从此,冷藏船的运行走上了正常的轨道。
  到了本世纪,美国的冷冻工业迅速发展,除了制成大型的冷藏设备外,还研究制造了小型的适合家庭使用的冷冻机,这就是电冰箱,这样一般家庭都可用来冷冻保存食品。
  为了提高致冷效率,又进一步作了改进,将致冷剂改用氟利昂,这就是现在的冰箱了,其原理与林德发明的致冷机完全一样。
  计算机
  原始的计算方法
  指算
  远古时代,从人类社会开始形成的时候起,人就不可避免地要和数打交道。在茹毛饮血的原始社会,狩猎、采集野果是人类赖以生存的手段。伴随着生存斗争,自然而然地产生了“多与少”、“有与无”等最早的数学萌芽,数的概念就此应运而生了。人们对数的认识是和计数的需要分不开的。计数,应该有计数工具的帮助才不容易出错。那时候又有什么计数工具呢?
  原来,人的双手就是最古老最现成的计数工具。最初,人们用一只手表示一,两只手表示二,等等。由于人类文明发展的不平衡,在澳洲的原始森林中至今还有停滞于这种发展水平的原始部落。他们一般人只知道一、二、三。即使部落中的“聪明人”,充其量也只知道四和五。再多,他们一概称之为“好多好多”。这其实就是人类远古状态的再现,可以看作是“活化石”。
  随着狩猎水平的提高,接触的数也多了起来。人们觉得有必要进一步用一个手指代表一,五个手指代表五,来“一五一十”地计数。于是,数的范围得到了扩大。用手指还可以作一些简单的加减法运算呢!
  用手指计数固然很方便,可是不能长时间保留,它们还得干活呀!何况,它们能表示的物体个数也很有限。我们不是常用“屈指可数”表示东西少得可怜吗?于是,有人想到了用小石块、小木块等表示数。小石块、小木块等不仅能计数,还能做简单的加减法。这无疑是一个进步。
  人类从以手指计数到用物体代表数的这一历史过程,可以从幼儿身上清楚地看到它的缩影。幼儿从牙牙学语开始,就对多与少有了最初步的概念。稍大一些,父母就要教他们用手指数数了。你们可能常常会发现:如果你问幼儿园的小朋友家里有几个人,他一定会扳着小手指一个、两个、三个……认真地数给你听。直到上小学,屈指计数一直是小朋友们的“绝招”。他们进而用几块积木、几颗糖来表示东西的数量,这不就相当于用石块、木块来计数吗?
  结绳计数
  石块、木块等物虽然能计数,可是不太“保险”。稍不留意,一脚碰着就乱了套。于是我们的祖先又创造了一些更为牢靠的计数方法。结绳计数就是华夏祖先较早的一种创造。在世界各地区,几乎都有过结绳计数的历史。
  关于结绳计数,国外有这样一则古老的传说:波斯王大理派军队去远征斯基福人,并命令他的卫队留下来保卫耶兹德河上的桥。他在皮条上拴了60个结,交给他们说:“卫队的勇士们,拿着这根皮条,并按照我说的去做:当你们知道我宣布打斯基福时,从那天起你们每天解一个结,当这些结所表示的日子都已经过去的时候,你们就可以回家啦。”南美洲秘鲁古代用于计数的绳子叫作“克维普”。他们是用龙舌兰的叶子或者驼毛做成的。没有染色的“克维普”仅用于计数,染上色的则表示一定的含意:黄色表示老玉米,红色表示武器,等等。
  除结绳外,在木头或竹片上刻痕或符号也是一种常用的计数方法。我国古代名著《周易·系辞》上就有“上古结绳而治,后世圣人,易之以书契”的记载。书契,其实就是一种刻痕,它们在文字出现之前就已经广泛地使用了。
  原始社会的生产力低下,接触的数比较小,用这些天然或人工的简陋计数工具已经绰绰有余。随着社会的发展,这些计数工具日渐落伍,人们不得不考虑设法创造出更为先进的计数工具和运算工具了。
  算盘
  算盘是人人都很熟悉的计算工具,算盘的发明者是谁?准确的发明年代又是哪一年呢?从东汉时期徐岳的著作《数术记遗》中我们最早看到“珠算”这个字眼。不过,注释中说它只能做加减法。今天看来,这顶多说是算盘的一个雏形吧。从现有可靠资料分析,珠算发明于宋元时期。明代程大位的著作 《直指算法统宗》(1592年)是当时一部流传最广,影响最大的专门讲述珠算的著作。
  人们查阅过大量的历史文献,从宋元时期查到程大位 (1553~1606)所处的时代,都查找不到算盘发明人的名宇。其实,前面提到的算筹的情况也是这样,这固然表明封建统治者对科技发明不够重视,另一方面也说明它们的发明是一个渐进的过程,是逐步改进、完善的,很难说是哪一个人的功劳。
  珠算是由筹算进化而来的。由于社会的发展,对计算的速度和准确性要求越来越高,所以人们对筹算进行了改革,创造出各种各样的歌诀。例如14+7的歌诀是“七除三进一”,同样,14—7的歌诀是“七退一还三”等等。所有的加法、减法、乘法和除法都有一套歌诀。实际上,在珠算出现以前,除了个别的除法歌诀外,几乎全部的珠算歌诀都已齐备。
  歌诀出现以后,计算速度提高了,继续摆弄算筹进行计算,就会手不从心。许多在室外进行计算的商业人员,由于客观环境的限制,尤其容易把算筹摆乱,造成错误。这样一来,珠算代替筹算成了必然的发展趋势,不仅条件已经具备,而且成了十分急需的事情。正是在这种情况下,当时的工匠、计算人员和商业人员一起,共同研制出巧妙的算盘。
  算盘与算筹的相似之处显而易见。在算筹表示的数字中,一根上筹当五,一根下筹当一;而珠算盘中,档上一珠当五,档下一珠当一。筹算中有条约定叫“五不单张”,意思是5不能单用一根筹表示,这就是算盘中档下有五珠的缘由。数学史专家还可以找到算盘中档上有两珠的筹算根据。上述事实,足以证明珠算是由筹算演变而来的。
  算盘是我国古代重大科学成就之一。它具有结构简单、运算简易、携带方便等优点,因而被广泛采用,历久不衰。直到今天,珠算仍是我国小学生的必修课。尽管各种电子计算机、电子计算器在市场上已经相当普及,但作加减法时,它们的计算速度仍赶不上珠算的熟练操作者手中的算盘。
  珠算在中国大显身手之后,又漂洋过海,流传到朝鲜、日本、东南亚和阿拉伯,对世界文明做出了重要的贡献。
  对数计算尺
  本世纪70年代前,广大的工程技术人员几乎人人都有一把模样奇特、精致美观的“尺”。这把奇妙的“尺”既不用来绘图,也不用来测量长度,而是用作计算,这就是计算尺。利用计算尺可以方便地进行乘除、乘方、开方及有关三角函数的运算。在电子计算机出现以前的百余年里,它一直是工程师们的忠实助手。
  这种计算尺是利用对数原理制成的,全称应该是对数计算尺。下面,让我们介绍一下它是如何发明的。
  对数的创始人是英国著名的数学家耐皮尔。
  1550年,耐皮尔出生在背山面海、景色秀丽的苏格兰爱丁堡。孩提时代的耐皮尔兴趣广泛、勤学好问、聪慧过人。他酷爱阅读自然科学方面的书,对数学的探求精神尤为突出。9岁时,父亲常给他做航海方面的计算题,培养他的运算能力和灵活运用知识的能力。1563年,耐皮尔刚满13岁,就以优异的成绩读完中学全部课程,直接进入著名的圣安得鲁斯大学学习。17岁那年,他以优等毕业生的资格被推荐派往欧洲大陆留学深造。
  回国后耐皮尔致力于航海学和天文学方面的研究。在多年的工作中,他发现了对航海十分有用的球面耐皮尔比拟式,发明了作乘除运算的耐皮尔算筹。
  耐皮尔一生与数字打交道,深深地感到计算是一项十分艰巨而繁难的工作,迫切需要找到一种能够简化运算的手段。经过数10年不懈努力,已进入晚年的耐皮尔终于在1614年创立了对数理论,对人类做出了巨大的贡献。在他之后,英国数学家布里格斯对耐皮尔的对数进行了深入的研究,最终在1624年将它转换成实用价值很高的常用对数,并重新制作了常用对数表。
  利用对数,可以将乘方、开方运算化为乘除运算,将乘除运算化为加减运算,这就大大地减轻了广大科技工作者的负担。从一定意义上讲,对数延长了他们的生命。伽利略曾经说过:“给我空间、时间和对数,我就可以创造出一个宇宙。”
  对数能够简化运算,但有一个缺点,就是必须经常查阅对数表。如何克服这一不足之处,使运算更为快捷呢?许多科学家又为此付出了艰辛的劳动。
  英国科学家E·冈特首先在这方面取得了突破。他在1620年利用对数制作出世界上第一把能进行乘除等运算的计算尺。
  计算尺是如何进行计算的呢?让我们先看一个最简单的,能算加减法的
  “计算尺”的“工作原理”吧!取两根刻度一样的学生用尺。如果要计算2+3=?只需将一根尺上的0对准另一尺的2,这时这根尺的3在另一根尺上所对的刻度就是答案。
  冈特的计算尺也由两根尺构成,只是它们上面的刻度是按照对数规律刻制而成的。1与2之间的间隔最大,2与3之间的间隔长度要小一些,越往后间隔越小。现在我们要计算2×3=?只需将一根尺的1对准另一尺的2,这根尺上的3在另一尺上所对的刻度就是答案。大家对此可能会感到惊奇,明明是两个长度相加,似乎该是求和,怎么会像变魔术似的变成了求积呢?原来,它的奥妙之处正是利用了对数的特性——将乘除运算简化为加减运算。
  自从冈特制成第一根对数计算尺以后,计算尺又经历了许多改进,随着社会实践的需要和工艺的革新,人们还研制出一些能用于水文、地质、土木工程等方面的专用计算尺。利用计算尺大大地减轻了工程技术人员的劳动强度。在精度要求不很高的场合,它几乎取代了人们的手工乘除运算,带来了很大的方便,直到本世纪80年代初才逐渐被使用更方便、运算速度更快、精度更高的电子计算器所取代。
  珠算和一代宗师
  筹算是我国古代传统的计算方法,它具有简单、形象、具体等优点,但也存在着布筹占用面积大,运筹速度加快时容易因摆弄不正而造成错误等缺点。所以,筹算经过数百年的改革,终于导致了一种新的计算方法——珠算及其计算工具——算盘的出现。
  “珠算”一词,最早见于东汉徐岳写的《数术记遗》一书(约2世纪),但许多学者认为此书是北周一位名叫甄鸾的人依托伪造而自己注释的。《数术记遗》中记载了14种古代算法,提到的算具有13种之多,而用珠的就有
  “太一算”、“两仪算”、“三才算”、“九宫算”和“珠算”一种。据甄鸾的注释,“珠算”把木板刻为三部分,上下两部分是停游珠用的,中间一部分是作定位用的;每位各有一颗可以移动的算珠,上面一颗珠与下面4颗珠用不同的颜色来区别;上面的一颗珠相当于5个单位,下面的4颗珠每一颗相当于一个单位。由此可见,当时的“珠算”与观今通行的珠算有所不同,但它已具备了现代珠算的雏型。
  我国最早的珠算术书没有流传下来。据明代数学家程大位在《算法统宗》
  (1592年)中记载,从1078年到1162年间,就有《盘珠集》、《走盘集》、
  《通微集》和《通杭集》4部著作与珠算有关,可惜它们一本都没有存留下来。元代刘因在他的《静修先生文集》(1279年)中有一首题为“算盘”的五言绝句。元末陶宗仪在《南村辍耕录》(1366年)一书中,用俗语形容婢仆侍候不勤像“算盘珠”那样,“拨之则动”。在《元曲选》中,有“去那算盘里拨了我的岁数”一句唱词。现存最早载有算盘图的书是明洪武四年(137年)新刻的《魁本对相四言杂字》。因此可以认为,我国珠算盘在元末明初已经定型,并普遍使用了。
  算盘的结构也有很大学问。在十进位制数,任何一个数位上的数字都不大于9,一般说来,每一位上应该有9个算珠。筹算的表示方法启发了数学家,6可以写成 ,7可以写成 ,也就是说同样是一根算筹,竖放表示1,而横放则表示5。仿照筹算的摆法,用一根横梁把算盘分成上、下两部分。上面一个珠表示5,下面一个珠表示1。这样一来,每一档上边有1珠,下面有4珠,就能够表示任何一个数位上的数字了。
  在做多位数乘、除演算过程中,有时有某一位的数字大于9而不便进入左边一位的情况,在筹算中可以用2个5来表示,如14摆成 。为了使用方便,仿照筹算在算盘上边放了2个珠,下面放了5个珠。这样,每一档就由最大表示9,扩展到最大表示15,对于做一般的乘除运算没有困难了。日本的算盘横梁上只放1个珠,在做多位数乘除法时,有许多的不方便。所以,经过了上千年的演变,确定了中国算盘的现在式样:用横梁把每一档分成上、下两部分,上2珠下5珠。
  中国珠算的算法主要是口诀。明代以来,珠算逐渐取代了筹算,珠算算法及口诀也逐渐趋于完善。在这种变化的过程中,贡献最大的是明代数学家程大位 (1533~1606年)。
  程大位是安徽休宁人,少年时期就极爱读书,对书法和数学很感兴趣,一生没有做过官。20岁起,他便在长江中、下游一带经商。因商业计算的需要,他非常留心数学,遍访名师,搜集很多数学书籍,刻苦钻研,并把心得随时记录下来。约40岁时,他弃商回家,专心研究珠算。他参考各家学说,加上自己的见解,于60岁时完成其杰作《直指算法统宗》(简称《算法统宗》)。
  《算法统宗》全书共17卷,万历二十年(1592年)刻印。书中把各种算法都编写成口诀形式,便于人们学习和使用;内收595个数学应用题,全用珠算进行解答。该书流传极为广泛和长久,不仅为中国民间普及珠算起了很大的作用,而且于明朝末年传入朝鲜、日本及东南亚各地,对这些地方珠算术的传播和发展,也起到了极大的促进作用。人们把程大位誉为“珠算一代宗师”。
  中国算盘结构简单,造价低廉,携带轻巧,使用方便,计算迅速、准确,是我国人民的一项杰出的创造和发明。现在,已经进入电子计算机的时代,算盘作为一种计算工具,还有存在的价值吗?事实证明,算盘不但没有被冷落,反而在日本、美国这些高度工业化的国家,有越来越多的人在使用它。在以大量的四则运算特别是以加减运算为主的财会工作中,算盘的计算速度和方便之处依然可与电子计算机媲美。据日本调查,在商业系统中加减法占去全部计算量的80%以上,在商业系统使用算盘显然更为合适。另外,科学研究表明,算盘还是很好的数学教学工具,珠算对发展青少年的理性思维、促进智力提高等方面都具有独特的作用。我国教育工作者还创造了将笔算、脑算、珠算三者有机结合的教育方法,使算盘成为一种小学算术教学的理想教具,为提高儿童智力、启发儿童思维开创了新路。日本教育家代表团来我国访问时,称赞“三算结合”的教育方法,认为算盘100年以后也不会被淘汰。古老的文明至今仍然大显神通。
  我国人民非常喜爱算盘。算盘除了有常见的木制算盘外,还有用金、银、铜、铁、象牙、玛瑙等制成的,大小、形状、作用各异。如果你有机会的话,到上海陈宝定算具陈列室参观一下,那500多种各式算盘一定会使你大开眼界。
  这里应该指出的是,算盘一词并不专指中国算盘。从现有文献资料来看,许多文明古国都有过各自的算盘。古今中外的各式算盘大致可以分为三类:沙盘类,算板类,穿珠算盘类。
  沙盘是在桌面、石板等平板上,铺上细沙,人们用木棍等在细沙上写字、画图和计算。后来逐渐不铺沙子,而是在板上刻上若干平行的线纹,上面放置小石子 (称为“算子”)来记数和计算,这就是算板。19世纪中叶在希腊萨拉米斯发现的一块1米多长的大理石算板,就是古希腊算板,现存在雅典博物馆中。算板一直是欧洲中世纪的重要计算工具,不过形式上差异很大,线纹有直有横,算子有圆有扁,有时又造成圆锥形 (类似现在的跳棋子),上面还标有数码。穿珠算盘指中国算盘、日本算盘和俄罗斯算盘。日本算盘叫“十露盘”,和中国算盘不同的地方是算珠的纵截面不是扁圆形而是菱形,尺寸较小而档数较多。俄罗斯算盘有若干弧形木条,横镶在木框内,每条穿着10颗算珠。
  在世界各种古算盘中,我国的算盘是最先进的。可以说,中国算盘已经基本具备了现代计算机的主要结构特征。例如,拨动算珠,也就是向算盘输入数据,这时算盘起着“存贮器”的作用;运算时,珠算口诀起着“运算指令”的作用,而算盘则起着“运算器”的作用。当然,算珠毕竟要靠人手来拨动,其运算能力远远比不上电子计算机,而且也根本谈不上“自动运算”。
  计算机初露锋芒
  我国清代的计算机
  有意思的是,本世纪60年代初,在我国故宫博物院发现了2台手摇式机械计算机,70年代又发现了8台。这10台计算机现在都已修复完毕,它们分盘式和筹式两种类型。
  故宫博物院藏有的6台盘式计算机,均属帕斯卡型,可能是康熙年间制造的。估计是来华传教的法国传教士亲自见过帕斯卡加法计算机,来我国后与我国数学家共同研制,仿照帕斯卡计算机原理制造而成。清代盘式计算机比帕斯卡计算机有很大改进。首先,它变加、减运算为四则运算,与莱布尼茨计算机有相同的功能。其次,把帕斯卡计算机由原来的6位和8位两种,扩展到10位和12位两种,运算数字的位数加大。
  我国清代制作的盘式计算机十分考究。内部构造用黄铜制作,有的表面镀金或镀银,装在红漆木盒里。10位的有10个圆盘,12位的有12个圆盘。圆盘分为上下两层,上盘固定不动,下盘可以转动。上盘的中央都刻有数位名称,其排列顺序自左至右,分别是“拾万”、“万”、“千”、“百”、
  “十”、“两”、“钱”、“分”、“厘”、“毫”。12个圆盘的则多“百万”和“千万”两个单位。通过下盘下面齿轮的转动而达到做加、减、乘、除运算的目的。
  筹式计算机也都是黄铜制作的,外形呈长方体形,表面开有长方孔。孔下有圆柱形的滚筒,筒上面贴有用象牙制成的特殊算筹,利用齿轮转动进行运算。筹式计算机是我国独创的。
  我国清代的计算机深藏在故宫里,成了真正的皇家专属品,其作用和命运可想而知了。
  超越时代的计算器
  这是一个真实的故事,是17世纪欧洲发生的一次航海事故。
  在辽阔无际的大西洋上,一艘货船在与波涛汹涌的大海搏斗中,乘风破浪前进着。舵舱里,一位身体健壮的船长,正一丝不苟地用航海仪器不停地进行观测,并把观测得到的数据一一认真仔细地计算,从中找出货船安全行驶的航道来。不多一会儿,他向舵手命令道:
  “左三度!”
  “右五度!”
  舵手复诵着命令,两手紧握舵轮,全神贯注地注视着前方。
  一切是那样的正常。
  突然,“轰隆”一声巨响,如同头顶一声闷雷,意料不到的事情发生了:货船触上了暗礁。虽然全船人员无一伤亡,可是货船却沉入了大海。
  事故发生后,当局来追查原委。专家们严格地审查了船长的航海日志和观测手稿,发现船长把航道计算错了,货船偏离了安全行驶的航道。船长不得其解,只得承认自己计算失误。可再仔细审查下去,发现责任不在船长,而是船长用的那本《对数表》。由于编写人员马虎,使错误的计算数字印刷到《对数表》上了!
  你知道《对数表》是什么吗?它是人们计算时使用的一种常用数据手册,里面印着许多数的平方根、立方根的值,另外还有常用的函数值。如果计算时需要用什么数,一查表,答案就出来了,不必再去笔算而浪费时间。《对数表》上印着的密密麻麻的成千上万的数据,倘若有的数据错了,而人们又引用了这个错误的数据,整个计算的结果就会全盘皆错。
  航海事故出现的年代正是广泛使用算表的时代。这些算表是由专门的机构集中众多计算人员,花费成年累月的时间编算而成的。然而,由于计算人员从早到晚埋头计算,枯燥的数字、单调的运算常弄得他们头昏脑胀,不仅工作效率低,而且很容易出现差错。例如,根据大地测量的数据绘制地图时,需要解决含有大量的未知数的代数与方程组。解含有800个方程组的问题,大约需要做25000万次算术运算,这靠一些简单的计算工具是很难实现的。
  航海事故的出现,使科学家们为之一惊。他们意识到:尽快改进数值计算,缩短计算时间,提高计算准确性,是需要急切解决的一个问题。
  17世纪,产业革命使人们开始把希望寄托于初步繁荣的机器制造业上,能不能用机器来进行计算呢?人们盼望着有一种新的计算机,能将计算过程中所得的数,自动存储下来,并能随时取出应用,自行做完一连串复杂的计算。所谓的“自动计算机”就是在人类好多世代的期望和追求下应运而生的。这种自动计算机正是电子计算机的前身。
  机械式计算机
  1623年6月19日,位于法国中部的克勒蒙菲朗的一个贵族家庭中,伴随着“哇”的一声啼哭,一个小精灵降临人世。自生下了小帕斯卡,家里增添了无限生机和欢乐。帕其卡生下时十分瘦弱,为使他长大成才,父母操尽了心。
  帕斯卡的父亲是位并不著名的数学家,但却是一位较有名望的税务统计师。他酷爱数学,深深地体会到数学是一门探索性很强的学科。他担心孩子学数学会劳神伤身,出于对儿子溺爱,他决心不让帕斯卡涉足数学。当然,父亲的顾虑是多余的。
  小帕斯卡天赋很高,他虽体弱多病,但从清秀的眉宇间却透露出一股灵气。他勤奋好学,兴趣广泛,平时很少外出玩耍,整天如饥似渴地看书学习,做札记。他七八岁就学完了差不多相当于小学的全部课程。他充满幻想,富有才气,尽管父亲把自己的全部数学书籍都收藏起来,只让他看语文书和儿童诗歌,连学校开设的数学课也不让他上,可是,这一切还是不能阻碍帕斯卡对数学产生浓厚的兴趣。而且父亲越是不让他学习数学,他心里萌发的探索数学奥秘的愿望越是强烈。那年,他12岁,常听到父亲与朋友们谈论“几何”,他听不懂,不知“几何”为何物,就去问老师。老师告诉他:“几何就是作出正确无误的图形,并找出它们之间的比例关系的一门科学。”他深信几何是一门十分有趣的学科,便偷偷地借来几本几何书,边读边用鹅毛笔在纸上画几何图形,兴味无穷。
  1635年,帕斯卡随父亲迁居巴黎。初秋的巴黎郊外,气候宜人,景色美丽。一天,帕斯卡和父亲到郊外游玩,回到家里,准备稍作休息后一起共进晚餐。这时,帕斯卡好像自言自语,又好像是告诉父亲一件重大事情似地说:
  “三角形三个内角的总和是两个直角。”父亲为儿子的这一见解惊呆了,楞了半人说不出话来。儿子的见解意味着一个不平常的发现。这个发现来自一个年仅12岁的少年,做父亲的内心不知有多么激动。他抚摸着帕斯卡的头,过了好半天才喃喃地说:“是的,孩子,是的。”
  帕斯卡的重大发现改变了父亲的做法。父亲挑选了欧几里得的《几何原本》给儿子学习,也不再阻拦他上数学课,平时还常为他解答疑难问题,并带帕斯卡参观各种科技展览,参加数学、物理的学术讨论会,鼓励他大胆地发表自己的见解。帕斯卡接触到了不少当时著名的数学家、物理学家、机械师……他领略到了数学的奥秘,眼界大开,学识上大有长进。
  1639年,刚满16岁的帕斯卡对圆锥曲线等问题进行了大量的研究,掌握了圆锥曲线的共性,写出了震惊世界的论文。1640年《圆锥曲线论》一书出版,人们把他的这一伟大贡献誉为“阿波罗尼斯之后的二千年的巨大进步。”从此,帕斯卡英名传遍欧洲。
  帕斯卡的父亲,作为一名数学家和税务统计师,每天要解答各方面提出的疑难问题,在一旁的帕斯卡看到父亲整天苦于统计大量的数据,便产生了强烈的愿望,要造一个理想的计算工具,来解脱父亲的辛劳。
  以前的计算工具和计算方法如笔算、算表、算图等速度慢,精度低,远远不能满足当时统计工作的需要。1642年,19岁的帕斯卡决心研制一种新的计算工具。帕斯卡有他的特点,一旦他对某件事发生兴趣,就会不顾一切地想方设法去完成。
  帕斯卡研究了机器运转的各种传动机构,又走访听取了一些著名工匠的意见,对自己设计的计算机图纸反复推敲,不断试验,不断改进,最后定样。他根据数的进位制 (十进位制)想到了采用齿轮来表示各个数位上的数字,通过齿轮的比来解决进位问题。低位的齿轮每转动10圈,高位上的齿轮只转动1圈。这样采用一组水平齿轮和一组垂直齿轮相互啮合转动,解决计算和自动进位,组成了一台计算机。
  帕斯卡于1642年设计出了计算机的图纸,连外壳和齿轮用什么样的金属材料都作了认真的选择,同年造出了一台计算机。这是世界上第一台齿轮式计算机。
  帕斯卡的这台计算机可以计算到8位数字,表示数字的齿轮共16个,每个齿轮均分成10个齿,每个齿表示0~9中的一个数,并按大小排列。8个齿轮在上面组成垂直齿轮组,从左到右构成8位读数,分别表示个位数、十位数、百位数……千万位数;另外8个齿轮在下面组成水平齿轮组,从左到右可以进行8位数的加减。
  帕斯卡发明的钟表式齿轮计算机,是机械式计算机的初级阶段。它的外壳用黄铜制成,精致美观。但这台计算机的功能还很差,做乘法时必须用连加的方法;做除法时,也只能用连减的方法,而且这台机器需用一个小钥匙拨动一下方能计算,每次计算结束,都必须复原到零位以后,方可重新计算,很不方便。在计算过程中它又常发生故障。但是帕斯卡计算机的发明对以后计算机的发展具有深远的影响。帕斯卡一下子成了著名人物。
  6年后,帕斯卡对自己发明的计算机提出了专利申请,1649年获得专利权。当他的计算机在卢森堡宫展出时,成千上万的人被吸引住了。帕斯卡自己也为这一伟大杰作而陶醉,他时常到卢森堡宫去看这件不朽的“艺术品”,深感自豪。帕斯卡计算机的发明是人类在计算工具上的新突破。它发明的意义远远超出了这台计算机本身的使用价值,它告诉人们用纯机械装置可代替人的思维和记忆。从此在欧洲兴起了“大家来造思维工具”的热潮。至今还有很多游人和学者慕名前往卢森堡宫参观这一历史上的珍品——世界上第一台齿轮式计算机。
  目前,帕斯卡发明制造的齿轮式计算机还保留有6台。其中5台在巴黎艺术和手工艺品博物馆内,一台保存在德累斯顿的物理教学沙龙。这些计算机长约30~侧厘米,宽15厘米,高10厘米,是科学史上难得的珍品。
  帕斯卡一直被公认为世界上第一台齿轮式计算机的发明者,他也为自己的这一成就而感到无比自豪。但在帕斯卡发明之前,德国的数学家卡什尔已设计制造出6位数的齿轮式计算机。卡什尔是著名的东方语言学家,数学家。他对天文学也有颇深的研究。他常困于大量的数据计算,被繁杂的计算搅得精疲力尽。现实中的问题促使他创造一种新的得力的计算工具,来减轻计算上的沉重负担。1623年,他开始着手构思设计,同年造出了样机,以后又进行了一些改进。这台计算机的原理与帕斯卡的有相同之处,使用过程中也极易发生故障。从历史上来看,人们对卡什尔发明计算机了解很少,它的社会影响极小,直到1958年,人们才在有关历史资料中得知他发明齿轮式计算机的情况。因此,在谈到第一个齿轮式计算机发明时,不能不提及卡什尔。实际上,卡什尔才是齿轮式计算机的第一个发明者。
  帕斯卡发明的第一台计算机触动了一位著名的学者,他就是在近代科学史上举足轻重的莱布厄兹。
  莱布尼兹(1646~1716),德国人,博学多才。他和科学大师牛顿是同时代人。
  1672年,他因外交事务到法国和英国居住了4年。在这4年中,他一生的事业发生了转折。这期间,他结识了许多科学家。其中与惠更斯(1629~1695,摆钟的发明人)的交往,激发起他对数学研究的浓厚兴趣。虽说莱布尼兹是“半路出家”,但他凭着刻苦钻研的精神,竟然后来居上,对数学及计算科学作出了3项重大贡献,跻身于数学大师行列,其中任何一项贡献都足以使他名垂后世。
  莱布尼兹一生对科学最大的贡献就是发明了微积分,牛顿也是发明者之一。但他们研究的路径不同。牛顿从物体的变速运动开始,创立了微积分学。而莱布尼兹则从几何学的角度考虑,也创立了微积分学,他所采用的表达形式更为合理,更为简洁。有兴趣的读者可以翻翻高等数学或理论物理学等书,在书里你会看到一个被拉长了的字母“S”——“∫”,这是积分的符号,它就是莱布尼兹在200多年前最先使用的,并且一直沿用至今。
  莱布尼兹对科学技术的第二大贡献是发明了机械式计算机。莱布尼兹对帕斯卡的发明异常钦佩。为改进当时的齿轮式计算机,他特地从德国迁居到法国巴黎,亲眼看一看帕斯卡的计算机,并聘请了著名的机械专家协助工作。帕斯卡不是已经制造成功了计算机吗?为什么他还投入如此巨大的精力呢?原来帕斯卡的计算机只能用于加减运算,对乘除只能用连加和连减的方法来解决,使用时必须记住加减的次数,很不方便,速度又很慢。这样,这台计算机所能起的作用就很有限了。莱布尼兹深感有必要研制一种真正实用的计算机,减轻人们在计算上的沉重负担。他曾说过:“让一些杰出的人才像奴隶般地把时间浪费在计算上是不值得的。”莱布尼兹的突出成就是他提出了直接计算乘除的计算机的设计思想。他在给一位朋友的信中曾这样写到:“我为制成这种计算机而感到无比幸福,它与帕斯卡的计算机相比有天壤之别,因为我的机器能在瞬时间里完成很大数字的乘除而不必连续加减。”
  莱布厄兹设计的计算机从外形上看是一个长100厘米,宽30厘米,高25厘米的盒子,非常精致。它的外面装有摇柄,里面则主要由不动的计数器和可动的定位机构两部分组成。通过盒子上开的12个小“窗口”,可以看到计数器的读数。计数器的每一位数字都由带有10个齿的齿轮构成。计算机的关键部件是一种所谓的梯形轴,这种梯形轴是齿数可变的齿轮的前身,有了它就可以顺利实现比较简便的乘除运算,导致滑架移位机构的产生,简化了多位数的乘除运算。莱布尼兹所作的这两项发明,长期为各式计算机采用。
  莱布尼兹计算机是第一台有较高实用价值的机械式计算机。各行各业要进行各种计算,都离不开令人厌烦的乘除法。有了莱布尼兹的计算机,就可以大大减轻劳动强度。这项发明得到了巴黎科学院院士与伦敦皇家学会的认可和奖励。1673年莱布尼兹被选为巴黎科学院院士和伦敦皇家学会会员。这一年他制成的第一台机械式计算机还被当作稀世珍宝送到伦敦展出。他兴奋地说:“今后天文学家们再也不必继续去训练为了计算所需要的耐心了……只要用上计算机,这些计算工作可以交给任何一个人去做。”
  莱布尼兹的计算机经过托巴斯等人的改进更趋完善。在电动机问世之后,还可以用电动机带动它,加快运算速度,更加省时省力。机械式计算机为人类服务了近300年,直到价廉物美的袖珍电子计算器风行市场,才完成了它的历史使命。
  莱布尼兹不仅是计算机的早期设计者、发明家之一,在数理逻辑的研究方面他也是一位先驱者,他在哲学史上占有显赫的地位。他还是一位法学家、历史学家、语言学家、地质学家、物理学家。他为中西科技文化的交流也做出过重大贡献。
  布尔代数
  在众多为计算机事业做出杰出贡献的科学家中,有位科学家终身没有接触过计算机,但他的研究成果却为现代计算机设计提供了重要的理论根据。他就是英国数学家布尔。他所创立的布尔代数或称逻辑代数理论现在是,以后也仍将是计算机专业的必修课程。
  布尔 (1815~1864)出身于一个手工业者的家庭,家境不十分宽裕。他原是一位中学教师,后来通过刻苦钻研,自学成才当上了大学教授。他对研究人类思维规律的逻辑学有着浓厚的兴趣。逻辑学当时在西方很受器重。古希腊著名哲学家和思想家亚里士多德在两千多年前就对逻辑学有过深刻研究,发展了演绎法,为形式逻辑奠定了基础。但是两千多年来,逻辑学在理论上的进展却很缓慢。著名数学家莱布尼兹在逻辑学上也做出过贡献,他提出了形式逻辑中重要的“充足理由律”。他还试图建立一种普遍方法,把一切正确的逻辑推理归结为数学演算,可惜没有最后获得成功。
  1854年,布尔发表了著作《思维规律研究》,成功地将形式逻辑归结为一种代数运算,这就是布尔代数。布尔代数产生于19世纪中叶,当时被认为
  “既无明显的实际背景,也不可能考虑到它的实际应用”,可是一个世纪后它却在计算机的理论和实践领域放射出耀眼的光彩。布尔代数在后来的机电计算机及电子式计算机的各类逻辑部件和程序的设计中都是不可缺少的数学工具。
  布尔代数与普通的代数不一样,布尔代数中的量只有两个值:1和0。“1”表示命题为真,“0”表示命题为假。这个结果很自然地与“接通”和“断开”两种状态联系起来,因此,布尔代数特别适合于电路系统的分析与综合。1910年荷兰学者埃伦菲斯特利用布尔代数建立了分析与设计继电器和电子电路的系统方法。这是后来机电式计算机和电子计算机研制成功必不可少的先决条件。
  机电计量机的发明
  我们今天早已步入电的世界,电灯、电话、电视……在人们日常生活中已经司空见惯了。我们每天都要和电打交道。没有电就没有现代文明,也就谈不上今天的电子计算机。
  正像蒸汽机发明以后,出现了第一次工业革命那样,各种电机 (发电机和电动机)的发明以及电力的广泛应用,标志着第二次工业革命的出现。这也使人们的视野比过去开阔多了。对于研究计算机的人来说,很自然的一件事就是:不能把目光仅仅停留在老式的机械式计算机上,应该考虑可否利用电器来改进原有的机械式计算机的装置。
  1822年,法国的盖·吕萨克和阿拉戈利用电流的磁效应,把通电导线绕在软铁上,使一块普通的软铁变成了磁铁。几年后,美国的亨利在此基础上发明了磁性强大的电磁铁,利用电磁铁的原理,人们制成了继电器。继电器是在机电式计算机上第一个派上用场的电器部件。
  同学们中一定有人玩过遥控玩具,或者使用过遥控电视机的遥控装置吧!大多数遥控装置都离不开继电器。继电器是一种开关,不过它的开启与闭合不是靠人手去拨弄,而是靠微弱的电流。这种弱电流通过一个电磁铁的线圈,使电磁铁磁化并将一个衔铁吸下。衔铁连着一个开关,就可使得另一个大电流接通或断开。
  有了继电器,一个微弱的电流就可以控制一个大电流的开断。而微弱电流本身的开断不一定需要我们用手去拨动,它可以通过其他各种手段达到。比如无线电信号、导电的水、能导电的人体等,因此,继电器在各种控制电路中有着广泛的应用。
  计算机的研制者们欣喜地发现,继电器的应用还有潜力可挖,它可以用来计数。它有开和关两种状态,就可以用来表示二进制中“0”和“1”两个数。用多个继电器就可以记录多位的二进制数。正是因为继电器具备这样的特性,所以,后来在机电式计算机中发挥了关键作用。
  随着电与人类关系的逐步密切,许多人开始考虑将电学成果应用于计算技术。其中首先取得实质性进展的是霍利瑞斯制表机。提到它的设计人霍利瑞斯,人们或许会感到意外,因为他既不是工程师,也不是科学家,而是一名普普通通的统计人员。
  霍利瑞斯是德国移民的后裔,毕业于哥伦比亚大学附属专科学校,他曾在美国人口调查局工作过,对统计工作的特点和艰巨性非常了解。
  当时的美国每隔几年就要作一次人口调查,调查的项目十分详细,光是按年龄的划分就有10类:5岁以下、6~10岁、11~20岁、21~30岁、……直到80岁以上年龄段。大家知道,美国人口主要是由移民组成的。18世纪末、19世纪初,美国的人口还不多,广大的西部还都是人烟稀少的森林、草原和沼泽地,这个时期作人口统计当然没有太大的困难。随着人口的迅速繁衍和大规模移民潮的涌入,美国人口剧增,这就使得人口调查和统计工作的难度一次次增加。
  大量的人口资料堆积如山,使统计工作者望而生畏,以致1880年的人口调查统计任务一直拖到1887年也没有结果。霍利瑞斯制表机就是在这种背景下应运而生的。
  一天,霍利瑞斯和一位在人口调查局工作的官员比灵斯聊天,几句话就扯到了令人厌烦而又无法回避的人口调查问题上。比灵斯叹了一阵苦经之后,忽然提到一个他已考虑了多日的设想,那就是使用穿孔卡片帮助统计。让每个接受调查的人都使用相同规格的硬纸卡片,按照不同的个人情况在不同的位置上穿孔,然后使用一种特殊的机器把这些信息读出并加以统计,至于机器如何设计他就不得而知了。
  比灵斯的设想给霍利瑞斯以极大的启发,激起了霍利瑞斯的创造灵感,使他仿佛看到了解决问题的曙光。他过去听说过提花编织机上穿孔卡的故事,那件事发生在1728年,一位法国工程师发明了一种自动提花织布机,其中设计了一连串长长的穿了孔的卡片,让卡片转动,使得那些与卡片上的洞眼正好对着的织针顺利通过,而不相对的织针通不过。这样,纱线就织出了规定好的花纹。当时已是19世纪末,时代不同了,要求也不一样。霍利瑞斯懂得,仅用机械的方法显然会黔驴技穷,只有配上最新的电工技术才会使问题得到解决。
  那时候、电工技术在美同是一样很时髦的于艺,霍利瑞斯虽然没有专门学过电学,但对电工技术还是很内行的,因为他常在业余时间摆弄各种电器。在同事、家人、邻居的心目中,他可是个能干而热心的人。最后,他将弱电流技术和过去的穿扎卡片技术融为一体,设计制造了可用于人口调查的制表机。
  霍利瑞斯制表机主要由5个部分构成:1.接受压力机;2.继电器;3.计数器;4.分类盒;5.电池。制表机上阅读穿孔卡片的设计别具匠心,现在我们就以一个孔的位置为例介绍一下。先将卡片平放在相应位置上,孔的位置上方是一根带弹簧的金属棒,下方是一个水银杯。工作时,金属棒被轻轻地压下来,如果该位置上没有孔,金属棒被卡片纸挡住不下来,不能出现后续动作。反之,由于该位置事先已穿好了孔,金属棒就“长驱直入”地插入下方水银杯中。
  水银和金属棒都是导体,它们接触以后,就好比接通了开关,形成了回路,产生电流。又由于所加的电压低,形成的电流很弱,不会产生损坏制表机的电火花,也不会对人体造成伤害。另一方面,电流虽弱,但可以使继电器吸合,产生大电流。大电流使相应的计数器加 1,这样就完成了此项目的一个人的统计。这种设计实在太巧妙了!金属棒有很多根,它的数目由统计项目和分类的多少来决定。
  其实在今天,我们仍然有不少表格需要填写,像中学生升学填表,大学生毕业填表,甚至有时在考试中也有用填表作为答案的。不过,今天不用再穿孔,而只要你在相应位置上用笔涂黑就行。读表的装置也比那时高明得多了,用的是光电阅读器,它可算是穿孔卡片方法的“直系后裔”了。
  美国的人口统计机关当时曾征集过能加快统计速度的发明,除霍利瑞斯以外,还有两名应征者。他们采用了颜色卡片,但分类和计算仍依靠手工,与霍利瑞斯的发明相比真是相形见拙,霍利瑞斯成了竞争中的唯一胜利者。
  有了制表机的武装,人口调查的难题自然迎刃而解。1890年,共作了6300万人的调查登记,资料汇总到首都华盛顿以后,一个月就完成了统计制表工作。而1880年,仅作了5000万人的调查登记,统计制表工作化了7年半的时间,还多化了几百万美元。
  人们对制表机的成功,大加赞赏,许多大企业的会计业务、产品统计,都竞相仿效,后来还风行于世界各地,奥地利、加拿大、挪威、俄国等都改用制表机进行人口调查。霍利瑞斯制表机,尤其是它的读写卡片装置的巧妙设计,对以后的机电式计算机和电子计算机的研制都有极大的影响。
  霍利瑞斯研制成功制表机以后,穿孔式计数技术得到了发展;继电器得到了更广泛的应用。人们还发现,19世纪的英国数学家布尔创立的一套被称为“布尔代数”的数学理论,特别适合用于逻辑电路的设计,因此,逻辑电路设计也取得了很大的成绩。就这样,在本世纪三四十年代,一批与当年巴贝奇方案相似的新型计算机——机电式计算机方案出现了。
  中国有句成语,叫做“英雄所见略同”。在德国和美国,几乎同时有人在研制机电式计算机,原理、结构、性能都十分相似。德国的朱斯从 1934年开始,投身于机电式计算机的研制,当时他24岁,正在学习土木工程。但是,他的主要精力没有放在土木工程这门“主课”上,反而对计算机研制工作于得津津有味,难免有人认为他“不务正业”,他的“爱好”受到别人奚落。他读过巴贝奇的传记,虽然巴贝奇的结局是悲剧性的,不过他觉得巴贝奇很有道理。如果巴贝奇活到现在,就有成功的可能。有人不理解他,觉得他为古人担忧有些好笑,可是朱斯却认真得很,决心依靠自己个人的财力开展研究。
  由于资金短缺,有时候动手拆除家中一些器具充当计算机部件。他试制的第一台计算机Z—1是纯机械结构的计算机,费用不算太大,花了九牛二虎之力,总算在1938年完成。接下去他要大干一番,打算采用继电器技术制造计算机Z—2,其实,这就是一台机电式计算机。
返回书籍页